《免费人教版高一数学必修一各章知识点总结 测试题组全套(含答案) .doc》由会员分享,可在线阅读,更多相关《免费人教版高一数学必修一各章知识点总结 测试题组全套(含答案) .doc(63页珍藏版)》请在三一办公上搜索。
1、我把不必要的都删了下,稍微整理了下,你自己再看看。下面是我给你排的目录,你看起来清楚些(1-8页是知识总结,9-37是每一章的训练题ABC,38-63页是训练题的答案)数学1(必修)第一章:(上)集合 基础训练A、B、C数学1(必修)第一章:(中) 函数及其表 综合训练A、B、C数学1(必修)第一章:(下)函数的基本性质提高训练A、B、C数学1(必修)第二章:基本初等函数(I) 基础训练A组数学1(必修)第二章:基本初等函数(I) 综合训练B组 数学1(必修)第二章:基本初等函数(I) 提高训练C组数学1(必修)第三章:函数的应用 基础训练A组数学1(必修)第三章:函数的应用 综合训练B组数学
2、1(必修)第三章:函数的应用 提高训练C组高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3) 元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有
3、理数集Q 实数集R1) 列举法:a,b,c2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR| x-32 ,x| x-323) 语言描述法:例:不是直角三角形的三角形4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0
4、 B=-1,1 “元素相同则两集合相等”即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作
5、A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合a,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是
6、 .4.设集合A=,B=,若AB,则的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| x2-mx+m2-19=0, 若BC,AC=,求m的值二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B
7、的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义
8、.u 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备)(见课本21页相关例2)2值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸
9、缩变换3) 对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数 (1)在定义域的不同部分上有不同的解
10、析表达式的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 二函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个
11、区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x11,且*u 负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,u 0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1);(2);(3)(二)指数函数及
12、其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a10a10a0,a0,函数y=ax与y=loga(-x)的图象只能是 ( )2.计算: ;= ;= ; = 3.函数y=log(2x2-3x+1)的递减区间为 4.若函数在区间上的最大值是最小值的3倍,则a= 5.已知,(1)求的定义域(2)求使的的取值范围第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标
13、。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根;收集数据画散点图选择函数模型求函数模型用函数模型解释实际问题符合实际不符合实际 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数(1),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(3),方程无实根,二次函数的图象与轴无交点,二次函数无零点5.函数的模型- 检验(数学1必修)第一章(上) 集合基础训练A组一、选择题1下列各
14、项中,不可以组成集合的是( )A所有的正数 B等于的数 C接近于的数 D不等于的偶数2下列四个集合中,是空集的是( )A BC DABC3下列表示图形中的阴影部分的是( )ABCD 4下面有四个命题:(1)集合中最小的数是;(2)若不属于,则属于;(3)若则的最小值为;(4)的解可表示为;其中正确命题的个数为( )A个 B个 C个 D个5若集合中的元素是的三边长,则一定不是( )A锐角三角形 B直角三角形 C钝角三角形 D等腰三角形6若全集,则集合的真子集共有( )A个 B个 C个 D个二、填空题1用符号“”或“”填空(1)_, _, _(2)(是个无理数)(3)_2. 若集合,则的非空子集的
15、个数为 。3若集合,则_4设集合,且,则实数的取值范围是 。5已知,则_。三、解答题1已知集合,试用列举法表示集合。2已知,,求的取值范围。3已知集合,若,求实数的值。4设全集,(数学1必修)第一章(上) 集合综合训练B组一、选择题1下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合与集合是同一个集合;(3)这些数组成的集合有个元素;(4)集合是指第二和第四象限内的点集。A个 B个 C个 D个2若集合,且,则的值为( )A B C或 D或或3若集合,则有( )A B C D4方程组的解集是( )A B C D。5下列式子中,正确的是( )A BC空集是任何集合的真子集 D6下列表述
16、中错误的是( )A若 B若CD二、填空题1用适当的符号填空(1)(2),(3)2设则。3某班有学生人,其中体育爱好者人,音乐爱好者人,还有人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。4若且,则 。5已知集合至多有一个元素,则的取值范围 ;若至少有一个元素,则的取值范围 。三、解答题1设2设,其中,如果,求实数的取值范围。3集合,满足,求实数的值。4设,集合,;若,求的值。(数学1必修)第一章(上) 集合 提高训练C组一、选择题1若集合,下列关系式中成立的为( ) A B C D2名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格人和人,项测验成绩均不及格的有人,项测
17、验成绩都及格的人数是( )A B C D 3已知集合则实数的取值范围是( )A B C D4下列说法中,正确的是( )A 任何一个集合必有两个子集; B 若则中至少有一个为C 任何集合必有一个真子集; D 若为全集,且则5若为全集,下面三个命题中真命题的个数是( )(1)若 (2)若(3)若A个 B个 C个 D个6设集合,则( )A B C D 7设集合,则集合( ) A B C D 二、填空题1已知,则。2用列举法表示集合:= 。3若,则= 。4设集合则 。5设全集,集合,,那么等于_。三、解答题1若2已知集合,且,求的取值范围。3全集,如果则这样的实数是否存在?若存在,求出;若不存在,请说
18、明理由。4设集合求集合的所有非空子集元素和的和。(数学1必修)第一章(中) 函数及其表示基础训练A组一、选择题1判断下列各组中的两个函数是同一函数的为( ),;,;,;,;,。A、 B、 C D、2函数的图象与直线的公共点数目是( )A B C或 D或3已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D4已知,若,则的值是( )A B或 C,或 D5为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A沿轴向右平移个单位 B沿轴向右平移个单位C沿轴向左平移个单位 D沿轴向左平移个单位6设则的值为( )A B C D二、填空题1设函数则实数的取值范围是 。2函数的定义
19、域 。3若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是 。4函数的定义域是_。5函数的最小值是_。三、解答题1求函数的定义域。2求函数的值域。3是关于的一元二次方程的两个实根,又,求的解析式及此函数的定义域。4已知函数在有最大值和最小值,求、的值。(数学1必修)第一章(中) 函数及其表示 综合训练B组一、选择题1设函数,则的表达式是( )A B C D2函数满足则常数等于( )A B C D3已知,那么等于( )A B C D4已知函数定义域是,则的定义域是( )A B. C. D. 5函数的值域是( )A B C D6已知,则的解析式为( )A B C D二、填空题1
20、若函数,则= 2若函数,则= .3函数的值域是 。4已知,则不等式的解集是 。5设函数,当时,的值有正有负,则实数的范围 。三、解答题1设是方程的两实根,当为何值时, 有最小值?求出这个最小值.2求下列函数的定义域(1) (2)(3)3求下列函数的值域(1) (2) (3)4作出函数的图象。(数学1必修)第一章(中) 函数及其表示提高训练C组一、选择题1若集合,则是( )A B. C. D.有限集2已知函数的图象关于直线对称,且当时,有则当时,的解析式为( )A B C D3函数的图象是( )4若函数的定义域为,值域为,则的取值范围是( )A B C D5若函数,则对任意实数,下列不等式总成立
21、的是( )A BC D6函数的值域是( )A B C D 二、填空题1函数的定义域为,值域为,则满足条件的实数组成的集合是 。2设函数的定义域为,则函数的定义域为_。3当时,函数取得最小值。4二次函数的图象经过三点,则这个二次函数的解析式为 。5已知函数,若,则 。三、解答题1求函数的值域。2利用判别式方法求函数的值域。3已知为常数,若则求的值。4对于任意实数,函数恒为正值,求的取值范围。(数学1必修)第一章(下) 函数的基本性质基础训练A组一、选择题1已知函数为偶函数,则的值是( )A. B. C. D. 2若偶函数在上是增函数,则下列关系式中成立的是( )A BC D3如果奇函数在区间 上
22、是增函数且最大值为,那么在区间上是( )A增函数且最小值是 B增函数且最大值是C减函数且最大值是 D减函数且最小值是4设是定义在上的一个函数,则函数在上一定是( )A奇函数 B偶函数 C既是奇函数又是偶函数 D非奇非偶函数。5下列函数中,在区间上是增函数的是( )A B C D6函数是( )A是奇函数又是减函数 B是奇函数但不是减函数 C是减函数但不是奇函数 D不是奇函数也不是减函数二、填空题1设奇函数的定义域为,若当时, 的图象如右图,则不等式的解是 2函数的值域是_。3已知,则函数的值域是 .4若函数是偶函数,则的递减区间是 .5下列四个命题(1)有意义; (2)函数是其定义域到值域的映射
23、;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是_。三、解答题1判断一次函数反比例函数,二次函数的单调性。2已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围。3利用函数的单调性求函数的值域;4已知函数. 当时,求函数的最大值和最小值; 求实数的取值范围,使在区间上是单调函数。(数学1必修)第一章(下) 函数的基本性质综合训练B组一、选择题1下列判断正确的是( )A函数是奇函数 B函数是偶函数C函数是非奇非偶函数 D函数既是奇函数又是偶函数2若函数在上是单调函数,则的取值范围是( ) A B C D3函数的值域为( )
24、A B C D4已知函数在区间上是减函数,则实数的取值范围是( )A B C D5下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数。其中正确命题的个数是( )A B C Ddd0t0 tOAdd0t0 tOBdd0t0 tOCdd0t0 tOD6某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、填空题1函数的单调递减区间是_。2已知定义在上的奇函数,当时,那么时, .3若函数在上
25、是奇函数,则的解析式为_.4奇函数在区间上是增函数,在区间上的最大值为,最小值为,则_。5若函数在上是减函数,则的取值范围为_。三、解答题1判断下列函数的奇偶性(1) (2)2已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数。 3设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.4设为实数,函数,(1)讨论的奇偶性;(2)求的最小值。(数学1必修)第一章(下) 函数的基本性质提高训练C组一、选择题1已知函数,则的奇偶性依次为( )A偶函数,奇函数 B奇函数,偶函数C偶函数,偶函数 D奇函数,奇函数2若是偶函数,其定义域为,且在上是
26、减函数,则的大小关系是( )A B C D3已知在区间上是增函数,则的范围是( )A. B. C. D.4设是奇函数,且在内是增函数,又,则的解集是( )A B C D5已知其中为常数,若,则的值等于( )A B C D6函数,则下列坐标表示的点一定在函数f(x)图象上的是( )A B C D 二、填空题1设是上的奇函数,且当时,则当时_。2若函数在上为增函数,则实数的取值范围是 。3已知,那么_。4若在区间上是增函数,则的取值范围是 。5函数的值域为_。三、解答题1已知函数的定义域是,且满足,如果对于,都有,(1)求;(2)解不等式。2当时,求函数的最小值。3已知在区间内有一最大值,求的值.
27、4已知函数的最大值不大于,又当,求的值。数学1(必修)第二章 基本初等函数(1)基础训练A组一、选择题1下列函数与有相同图象的一个函数是( )A BC D2下列函数中是奇函数的有几个( ) A B C D3函数与的图象关于下列那种图形对称( )A轴 B轴 C直线 D原点中心对称4已知,则值为( )A. B. C. D. 5函数的定义域是( )A B C D6三个数的大小关系为( )A. B. C D. 7若,则的表达式为( )A B C D二、填空题1从小到大的排列顺序是 。2化简的值等于_。3计算:= 。4已知,则的值是_。5方程的解是_。6函数的定义域是_;值域是_.7判断函数的奇偶性 。
28、三、解答题1已知求的值。2计算的值。3已知函数,求函数的定义域,并讨论它的奇偶性单调性。4(1)求函数的定义域。(2)求函数的值域。数学1(必修)第二章 基本初等函数(1) 综合训练B组一、选择题1若函数在区间上的最大值是最小值的倍,则的值为( )A B C D2若函数的图象过两点和,则( )A B C D3已知,那么等于( )A B C D4函数( )A 是偶函数,在区间 上单调递增B 是偶函数,在区间上单调递减C 是奇函数,在区间 上单调递增D是奇函数,在区间上单调递减5已知函数( )A B C D6函数在上递减,那么在上( )A递增且无最大值 B递减且无最小值 C递增且有最大值 D递减且有最小值二、填空题1若是奇函数,则实数=_。2函数的值域是_.3已知则用表示 。4设, ,且,则 ; 。5计算: 。6函数的值域是_.三、解答题1比较下列各组数值的大小:(1)和;(2)和;(3)2解方程:(1) (2)3已知当其值域为时,求的取值范围。4已知函数,求的定义域和值域;数学1(必修)第二章 基本初等函数(1)提高训练C组一、选择题1函数上的最大值和最小值之和为,