《高考新课标卷理科数学试题及答案word版解析版.doc》由会员分享,可在线阅读,更多相关《高考新课标卷理科数学试题及答案word版解析版.doc(10页珍藏版)》请在三一办公上搜索。
1、2011年普通高等学校招生全国统一考试(新课标)理科数学解析第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)复数的共轭复数是(A) (B) (C) (D)解析:=共轭复数为C(2)下列函数中,既是偶函数又在单调递增的函数是(A) (B) (C) (D) 解析:由图像知选B(3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120 (B)720 (C)1440 (D)5040解析:框图表示,且所求720选B(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组
2、的概率为(A) (B) (C) (D)解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A(5)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=解析:由题知,选B(A) (B) (C) (D)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。故选D(7)设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为(A) (B
3、) (C)2 (D)3解析:通径|AB|=得,选B(8)的展开式中各项系数的和为2,则该展开式中常数项为(A)-40 (B)-20 (C)20 (D)40解析1.令x=1得a=1.故原式=。的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项=-40+80=40(9)由曲线,直线及轴所围成的图形的面积为(A) (B)4 (C) (D)6解析;用定
4、积分求解,选C(10)已知a与b均为单位向量,其夹角为,有下列四个命题 其中的真命题是(A) (B) (C) (D)解析:得, ,。由得。 选A(11)设函数的最小正周期为,且,则 (A)在单调递减 (B)在单调递减 (C)在单调递增(D)在单调递增解析:,所以,又f(x)为偶函数,选A(12)函数的图像与函数的图像所有交点的横坐标之和等于 (A)2 (B) 4 (C) 6 (D)8解析:图像法求解。的对称中心是(1,0)也是的中心,他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点。不妨把他们的横坐标由小到大设为,则,所以选D第卷二、填空题:本大题共4小题,每小题5分。(13)若变
5、量满足约束条件则的最小值为 。解析:画出区域图知,当直线过的交点(4,-5)时,(14)在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为 。解析:由得a=4.c=,从而b=8,为所求。(15)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。解析:设ABCD所在的截面圆的圆心为M,则AM=,OM=,.(16)在中,则的最大值为 。解析:,;,故最大值是三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)等比数列的各项均为正数,且()求数列的通项公式;()设 求数列的前n项和.解析:()设数列a
6、n的公比为q,由得所以。由条件可知a0,故。由得,所以。故数列an的通项式为an=。()故所以数列的前n项和为(18)(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,DAB=60,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。解析1:()因为, 由余弦定理得 从而BD2+AD2= AB2,故BD AD;又PD 底面ABCD,可得BD PD所以BD 平面PAD. 故 PABDxzPCADy()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,。设平面PAB的法向量为n=(x,y,
7、z),则, 即 因此可取n=设平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 (19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:()分别估计用A配方,B配方生产的产品的优质品率;()已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标
8、值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解析:()由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42()用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此X的可能值为-2,2,4 P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,X-224P0.040.540.42即X的分布列为X的数学期望值EX=-20.04+20.54+40.42=2.68(20)(本小
9、题满分12分) 在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足, ,M点的轨迹为曲线C。()求C的方程;()P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。解析; ()设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由题意可知(+)=0, 即(-x,-4-2y)(x,-2)=0.所以曲线C的方程式为y=x-2.()设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则o点到的距离.又,所以当=0时取等号,所以o点到距离的最小值为2.
10、(21)(本小题满分12分)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围。解析:()由于直线的斜率为,且过点,故即解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,h(x)递减。而故当时, ,可得;当x(1,+)时,h(x)0从而当x0,且x1时,f(x)-(+)0,即f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得 h(x)0,与题设矛盾。 综合得,k的取值范围为(-,0点评;求参数的范围一般用离参法,然后用导数求出最值进行求解。若求导
11、后不易得到极值点,可二次求导,还不行时,就要使用参数讨论法了。即以参数为分类标准,看是否符合题意。求的答案。此题用的便是后者。请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,分别为的边,上的点,且不与的顶点重合。已知的长为,AC的长为n,,的长是关于的方程的两个根。()证明:,四点共圆;()若,且,求,所在圆的半径。解析:(I)连接DE,根据题意在ADE和ACB中, 即.又DAE=CAB,从而ADEACB 因此ADE=ACB 所以C,B,D,E四点共圆。()m=4, n=6时,方程x2-14
12、x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GHAB, HFAC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2()求C2的方程()在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.解析; (I)设P(x,y),则由条件知M().由于M点在C1上,所以 即 从而的参数方程为(为参数)()曲线的极坐标方程为,曲线的极坐标方程为。射线与的交点的极径为,射线与的交点的极径为。所以.(24)(本小题满分10分)选修4-5:不等式选讲设函数,其中。()当时,求不等式的解集;()若不等式的解集为 ,求a的值。解析:()当时,可化为。由此可得 或。故不等式的解集为或。() 由 得 此不等式化为不等式组 或即 或因为,所以不等式组的解集为由题设可得= ,故