《高中新课程数学(新课标人教A版)选修23《3.2.1独立性检验的基本思想及其初步应用》导学案( 高考) .doc》由会员分享,可在线阅读,更多相关《高中新课程数学(新课标人教A版)选修23《3.2.1独立性检验的基本思想及其初步应用》导学案( 高考) .doc(2页珍藏版)》请在三一办公上搜索。
1、3.2.1独立性检验的基本思想及其初步应用 课前预习 阅读教材P91-P95,了解相关概念,如:分类变量、列联表、独立性检验。学习目标 (1)通过对典型案例的探究,了解独立性检验(只要求列联表)的基本思想、方法及初步应用; (2)经历由实际问题建立数学模型的过程,体会其基本方法。学习重点:独立性检验的基本方法学习难点:基本思想的领会学习过程一、情境引入5月31日是世界无烟日。有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,
2、进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动【自主学习】(1)将上述数据用下表(一)来表示:不患肺癌患肺癌总计不吸烟吸烟总计 (2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中患肺癌的人约占多大比例? ;在吸烟的人中患肺癌的人约占多大比例? 。问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大? 【合作探究】 1、观察、分析样本数据的列联表和柱形图、条形图,你能得出
3、什么结论? 2、该结论能否推广到总体呢? 3、假设:患肺癌与吸烟没有关系。则两事件发生的概率有何关系?不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d试用上表(二)中字母表示两概率及其关系,并化简该式。你能得到何结论?4、构造随机变量(其中),结合3中结论,若成立,则K2应该很 (大、小)根据表(一)中的数据,利用4中公式,计算出K2的观测值,该值说明什么?(统计学中有明确的结论,在成立的情况下,P(K26.635)0.01。)5、结合表(二)和三维柱形图、二维条形图如何判断两个分类变量是否有关系?利用独立性检验呢?二者谁更精确?【当堂检测】在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?