某汽车驱动桥设计说明书.doc

上传人:小飞机 文档编号:4265567 上传时间:2023-04-12 格式:DOC 页数:54 大小:1.92MB
返回 下载 相关 举报
某汽车驱动桥设计说明书.doc_第1页
第1页 / 共54页
某汽车驱动桥设计说明书.doc_第2页
第2页 / 共54页
某汽车驱动桥设计说明书.doc_第3页
第3页 / 共54页
某汽车驱动桥设计说明书.doc_第4页
第4页 / 共54页
某汽车驱动桥设计说明书.doc_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《某汽车驱动桥设计说明书.doc》由会员分享,可在线阅读,更多相关《某汽车驱动桥设计说明书.doc(54页珍藏版)》请在三一办公上搜索。

1、江淮帅铃汽车驱动桥设计说明书第1章 绪 论1.1 本课题的目的和意义本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。把握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计运算方法。汽车驱动桥位于传动系的末端。其差不多功用第一是增扭,降速,改变转矩的传递方

2、向,即增大由传动轴或直截了当从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承担作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一样由主减速器,差速器,车轮传动装置和桥壳组成。关于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的物资,因此选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最

3、大转矩,桥壳还承担着反作用力矩。汽车的经济性日益成为人们关怀的话题,这不仅仅只对乘用车,关于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采纳的发动机差不多上大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350Nm以上,百公里油耗是一样都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的缺失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中查找减少能量在传递的过程中的缺失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情形下,采纳性

4、能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。因此设计新型的驱动桥成为新的课题。目前我国正在大力进展汽车产业,采纳后轮驱动汽车的平稳性和操作性都将会有专门大的提高。后轮驱动的汽车加速时,牵引力将可不能由前轮发出,因此在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。修理费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有专门大的差别。1.2 驱动桥的分类1.2.1 非断开式驱动桥一般非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车内,在多数的越野汽车和部分轿车内也采纳这种结构。他们的具体结构、专门是桥壳结构尽管

5、各不相同,然而有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓尺寸要紧取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙差不多确定的情形下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,假如单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也能够将第二级减速齿轮作为轮边减速器。关于轮边减速器:越野汽车为了提高离地间隙,能够将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其

6、从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳固性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采纳圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型家庭乘用车内,有时采纳蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情形下能够得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置专门方便。1.2.2 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱

7、动桥的桥壳是分段的,同时彼此之间能够做相对运动,因此这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采纳独立悬挂则能够彼此致立地相关于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的要紧因素,而汽车簧下部分质量的大小,对其平顺性也有显著的阻碍。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车

8、轮与地面的接触情形及对各种地势的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。然而,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构要紧见于对行驶平顺性要求较高的一部分轿车及一些越野汽车内,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。1.2.3 多桥驱动的布置为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车差不多上采纳多桥驱动,常采纳的有44、66、88等驱动型式。在多桥驱动的情形下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递

9、方式,多桥驱动汽车各驱动桥的布置型式分为非贯穿式与贯穿式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,如此不仅使传动轴的数量增多,且造成各驱动桥的零件专门是桥壳、半轴等要紧零件不能通用。而对88汽车来说,这种非贯穿式驱动桥就更不适宜,也难于布置了。为了解决上述问题,现代多桥驱动汽车差不多上采纳贯穿式驱动桥的布置型式。在贯穿式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,同时各驱动桥不是分别用自己的传动轴与分动器直截了当联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯穿中间桥而传递的。

10、其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,同时简化了结构、减小了体积和质量。这关于汽车的设计(如汽车的变型)、制造和修理,都带来方便。1.3 要紧内容(1)驱动桥和主减速器、差速器、半轴、驱动桥桥壳的结构形式选择(2)主减速器的差不多参数选择与设计运算(3)差速器的设计与运算(4)半轴的设计与运算(5)驱动桥桥壳的受力分析及强度运算(6)用CAD画装配图、零件图。第2章 驱动桥结构方案分析2.1 主减速器的类型由于要求设计的是江淮帅铃的驱动桥,要设计如此一个级别的驱动桥,一样选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空

11、心梁,一样是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,现在驱动桥,驱动车轮都属于簧下质量。驱动桥的结构形式有多种,差不多形式有三种如下:(1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的差不多形式, 在载重汽车中占主导地位。一样在主传动比小于6的情形下,应尽量采纳中央单级减速驱动桥。目前的中央单级减速器趋于采纳双曲线螺旋伞齿轮,主动小齿轮采纳骑马式支承, 有差速锁装置供选用。(2)中央双级驱动桥。由于中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们专门难变型为前驱动桥,使用受到一定限制;因此,综

12、合来说,双级减速桥一样均不作为一种差不多型驱动桥来进展,而是作为某一专门考虑而派生出来的驱动桥存在。(3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车内。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。综上所述,设计的驱动桥的传动比小于6。况且由于随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已出现出向单级化进展的趋势。单级桥产品的优势为单级桥的进展拓展了宽敞的前景。从产品设计的角度看, 重型车产品在主减速比小于6的情形下,应尽量选用单级减速驱动桥。2.2 设计驱动桥的差不多

13、要求(1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。(2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。(3)齿轮及其他传动件工作平稳,噪声小。(4)在各种载荷和转速工况下有较高的传动效率。(5)具有足够的强度和刚度,以承担和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,专门是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。(6)与悬架导向机构运动和谐。(7)结构简单,加工工艺性好,制造容易,修理,调整方便。驱动桥的结构型式按工作特性分,能够归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采纳非独立悬架时,应该

14、选用非断开式驱动桥;当驱动车轮采纳独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但能够大大提高汽车在不平路面上的行驶平顺性。2.3 非断开式驱动桥一般非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车内。在多数的越野汽车和部分轿车内也采纳这种结构。他们的具体结构、专门是桥壳结构尽管各不相同,然而有一个共同特点,即桥壳是一根支撑在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。驱动桥的轮廓

15、尺寸要紧取决于主减速器的形式。在汽车轮胎尺寸和驱动桥下的最小离地间隙差不多确定的情形下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,假如单级主减速器不能满足离地间隙要求,可该用双级别结构,在双级主减速器中,通常把两级减速器齿轮放在一个主减速壳体内,也能够将第二级减速齿轮作为轮边减速器。关于轮边减速器:越野汽车为了提高离地间隙,能够将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方:公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳固性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方:有些双层公共汽车为了进一步降低车厢地板高度,在采纳圆柱齿轮轮

16、边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。在少数具有高速发动机得大型公共汽车、多桥驱动汽车和超重型载货汽车内,有时采纳涡轮式主减速器,它不仅具有在质量小、尺寸紧凑的情形下能够得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置专门方便。2.4 断开式驱动桥断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,同时彼此之间能够做相对运动,因此这种桥成为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横梁或车厢地板上,或与脊梁式车架相联。主减

17、速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采纳独立悬挂则能够彼此致立地相关于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的要紧因素,而汽车簧下部分质量的大小,对其平顺性也有显著的阻碍。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情形及对各种地势的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。然而,由于断开

18、式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构要紧见于对行驶平顺性要求较高的一部分轿车及一些越野车内,且后者多属于轻型一下的越野汽车或多桥驱动的重型越野汽车。由于非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,参照国内相关货车的设计,最后本课题选用非断开式驱动桥。2.5 本章小结本章要紧针对给定的汽车进行分析和布置方案的确定以及主减速器的结构的确定,为下面的设计过程做铺垫。第3章 主减速器设计3.1 主减速器的结构形式主减速器的结构形式要紧是依照其齿轮的类型,主动齿轮和从动齿轮的安置方法以及减速形式的不同而异。3.1.1 主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮,双曲面齿轮,圆柱

19、齿轮和蜗轮蜗杆等形式。在此选用弧齿锥齿轮传动,其特点是主、从动齿轮的轴线垂直交于一点。由于轮齿端面重叠的阻碍,至少有两个以上的轮齿同时啮合,因此能够承担较大的负荷,加之其轮齿不是在齿的全长上同时啮合,而是逐步有齿的一端连续而平稳的地转向另一端,因此工作平稳,噪声和振动小。3.1.2 主减速器的减速形式由上段分析设定采纳i6小传动比,采纳单级主减速器,单级减速驱动桥产品的优势:单级减速驱动车桥是驱动桥中结构最简单的一种,制造工艺较简单,成本较低,是驱动桥的差不多型,在重型汽车内占有重要地位;3.1.3 主减速器主,从动锥齿轮的支承形式作为一个4吨级的驱动桥,传动的转矩专门大,因此主动锥齿轮采纳骑

20、马式支承。装于轮齿大端一侧轴颈上的轴承,多采纳两个能够预紧以增加支承刚度的圆锥滚子轴承,其中位于驱动桥前部的通常称为主动锥齿轮前轴承,其后部紧靠齿轮背面的那个齿轮称为主动锥齿轮后轴承;当采纳骑马式支承时,装于齿轮小端一侧轴颈上的轴承称为导向轴承。导向轴承都采纳圆柱滚子式,同时内外圈能够分离(有时不带内圈),以利于拆装。 3.2 主减速比的运算主减速比对主减速器的结构形式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直截了当阻碍。的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力运算来确定。可利用在不同的下的功率平稳图来运算对汽车动力性的阻碍。通过优化设计,对

21、发动机与传动系参数作最佳匹配的方法来选择值,但是汽车获得最佳的动力性和燃料经济性。为了得到足够的功率而使最高车速稍有下降,一样选得比最小值大10%25%,即按下式选择: =0.377=4.444 式中:车轮的滚动半径=0.5(m) 最大功率时的发动机转速3000r/min;汽车的最高车速85km/h; 变速器最高挡传动比1; 分动器传动比1.223。3.2.1 主减速器运算载荷的确定1.按发动机最大转矩和最低挡传动比确定从动锥齿轮的运算转矩ce (3.1)式中: 传动系的最低挡传动比,在此取9.01;发动机的输出的最大转矩350;传动系上传动部分的传动效率,在此取0.9;该汽车的驱动桥数目在此

22、取1;1.0 由以上各参数可求=13612.7 (3.2)2.按驱动轮打滑转矩确定从动锥齿轮的运算转矩 (3.3)式中:汽车满载时一个驱动桥给水平地面的最大负荷, 取40000N轮胎对地面的附着系数,关于安装一样轮胎的公路用车,取=0.85;车轮的滚动半径,轮胎型号为12.00R20,滚动半径为 0.527m;,分别为所运算的主减速器从动锥齿轮到驱动车轮之间的传动效率和传动比,取0.9, 取1.0 因此=19908.93.按汽车日常行驶平均转矩确定从动锥齿轮的运算转矩关于公路车辆来说,使用条件较非公路车辆稳固,其正常连续的转矩依照所谓的平均牵引力的值来确定: (3.4)式中:汽车满载时的总重量

23、,此取802000N;所牵引的挂车满载时总重量,0N,但仅用于牵引车的运算;道路滚动阻力系数,关于载货汽车可取0.0150.020;在此取0.018汽车正常行驶时的平均爬坡能力系数,关于载货汽车可取0.050.09在此取0.07汽车的性能系数,取0;,n见式(3.1),(3.3)下的说明。因此 =41326.2式(3.1)式(3.4)参考汽车车桥设计1式(3.10)式(3.12)。3.2.2 主减速器差不多参数的选择1.主、从动锥齿轮齿数和选择主、从动锥齿轮齿数时应考虑如下因素:(1)为了磨合平均,之间应幸免有公约数。(2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不小于

24、40。(3)为了啮合平稳,噪声小和具有高的疲劳强度关于商用车一样不小于6。(4)主传动比较大时,尽量取得小一些,以便得到中意的离地间隙。(5)关于不同的主传动比,和应有适宜的搭配。依照以上要求参考汽车车桥设计1中表3-12 表3-13取=9 =40 2.从动锥齿轮大端分度圆直径和端面模数关于单级主减速器,增大尺寸会阻碍驱动桥壳的离地间隙,减小又会阻碍跨置式主动齿轮的前支承座的安装空间和差速器的安装。可依照体会公式初选,即 (3.5)直径系数,一样取13.016.0 从动锥齿轮的运算转矩,为Tce和Tcs中的较小者,因此在此取=13612.7=(13.016.0)=(310.4382)初选=37

25、0 则=/=370/40=9.25有参考机械设计手册2表23.4-3中选取9 , 则=360依照=来校核=9选取的是否合适,其中=(0.30.4)此处,=(0.30.4)=(7.169.55),因此满足校核。3.主,从动锥齿轮齿面宽和关于从动锥齿轮齿面宽,举荐不大于节锥的0.3倍,即,而且应满足,关于汽车主减速器圆弧齿轮举荐采纳: =0.155428=55.9 在此取60一样适应使锥齿轮的小齿轮齿面宽比大齿轮稍大,使其在大齿轮齿面两端都超出一些,通常小齿轮的齿面加大20%较为合适,在此取=804.中点螺旋角螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端螺旋角最小,弧齿锥齿轮副的中点螺旋角

26、是相等的,选时应考虑它对齿面重合度,轮齿强度和轴向力大小的阻碍,越大,则也越大,同时啮合的齿越多,传动越平稳,噪声越低,而且轮齿的强度越高,应不小于1.25,在1.52.0时成效最好,但过大,会导致轴向力增大。汽车主减速器弧齿锥齿轮的平均螺旋角为3540,而商用车选用较小的值以防止轴向力过大,通常取35。5.螺旋方向 主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向阻碍其所受的轴向力的方向,当变速器挂前进挡时,应使主动锥齿轮的轴向力离开锥顶方向,如此可使主、从动齿轮有分离的趋势,防止轮齿因卡死而损坏。因此主动锥齿轮选择为左旋,从锥顶看为逆时针运动,如此从动锥齿轮为右旋,从锥顶看为顺

27、时针,驱动汽车前进。6.法向压力角 加大压力角能够提高齿轮的强度,减少齿轮不产生根切的最小齿数,但关于尺寸小的齿轮,大压力角易使齿顶变尖及刀尖宽度过小,并使齿轮的端面重叠系数下降,一样关于“格里森”制主减速器螺旋锥齿轮来说,规定重型载货汽车可选用22.5的压力角。3.2.3 主减速器圆弧锥齿轮的几何尺寸运算表3.1 主减速器圆弧锥齿轮的几何尺寸运算用表序 号项 目计 算 公 式计 算 结 果1主动齿轮齿数92从动齿轮齿数403端面模数94齿面宽=80 =625工作齿高80.46全齿高=99.757法向压力角=22.58轴交角=909分度圆直径=86=380序 号项 目计 算 公 式计 算 结

28、果10节锥角arctan=90-=12.68=77.3211节锥距A=A=245.9712周节t=3.1416 t=37.6913齿顶高=10.214齿根高=12.46 15径向间隙c=c=2.25616齿根角=2.899 17面锥角=15.581=80.21718根锥角=9.783=74.41919齿顶圆直径=127.902=484.47920节锥顶点止齿轮外缘距离=237.76=44.0521理论弧齿厚 =27.38mm=10.32mm22齿侧间隙B=0.3050.4060.4mm23螺旋角=353.2.4 主减速器圆弧锥齿轮的强度运算1 主减速器圆弧齿螺旋锥齿轮的强度运算(1)单位齿长上

29、的圆周力 在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即 (3.6)式中:P作用在齿轮上的圆周力,按发动机最大转矩Temax和最大附着力矩 两种载荷工况进行运算,N; 从动齿轮的齿面宽,在此取80mm. 按发动机最大转矩运算时: (3.7)式中:发动机输出的最大转矩,在此取350;变速器的传动比;主动齿轮节圆直径,在此取108mm.按上式 =730Nmm (3.8) (2)轮齿的弯曲强度运算 汽车主减速器锥齿轮的齿根弯曲应力为 N/ (3.9) 式中:该齿轮的运算转矩,Nm;超载系数;在此取1.0尺寸系数当时,在此0.829载荷分配系数,当两个齿轮均用

30、骑马式支承型式时,1.001.1;质量系数,关于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取1.0;运算齿轮的齿面宽,mm;运算齿轮的齿数;端面模数,mm;运算弯曲应力的综合系数,它综合考虑了齿形系数。载荷作用点的位置、载荷在齿间的分布、有效齿面宽、应力集中系数及惯性系数等对弯曲应力运算的阻碍。运算弯曲应力时本应采纳轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按图2-1选取小齿轮的0.225,大齿轮0.195.按上式173 N/ 210.3 N/ =199.6 N/3076.9 h=因此轴承符合使用要求。关于从动齿轮的轴承C,D的径向力运算公式见式(2.

31、18)和式(2.19)已知F=25450N,=9662N,=20202N,a=410mm,b=160mm.c=250mm因此,轴承C的径向力: =10401.3N 轴承D的径向力: =23100.5N轴承C,D均采纳圆锥滚子轴承32218,其额定动载荷Cr为134097N(3)关于轴承C,轴向力A=9662N,径向力R=10401.3N,同时=0.93e,在此e值为1.5tana约为0.402,由机械设计6中表18.7可查得X=0.4,Y=0.4cota=1.6因此Q=1.2(0.496621.610401.3)=24608.256N =28963 h因此轴承C满足使用要求。(4)关于轴承D,

32、轴向力A=0N,径向力R=23100.5N,同时=.4187e 由机械设计6中表18.7可查得X=0.4,Y=0.4cota=1.6 因此Q=1.2(1.623100.5)=44352.96N =4064.8 h 因此轴承D满足使用要求。此节运算内容参考了汽车车桥设计1和汽车设计3关于主减速器的有关计算。3.3 本章小结本章第一依照所学的汽车理论的知识运算出主减速器的传动比,确定齿轮的参数,介绍了齿轮变为系数的选择原则,并依照各项参数运算齿轮的参数,简单介绍了齿轮材料的选择原则,对齿轮进行了校核。第4章 差速器设计差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器有

33、多种形式,在此设计一般对称式圆锥行星齿轮差速器。 4.1 对称式圆锥行星齿轮差速器的结构一般的对称式圆锥齿轮差速器由差速器左右壳,两个半轴齿轮,四个行星齿轮,行星齿轮轴,半轴齿轮垫片及行星齿轮垫片等组成。如图3-2所示。其广泛用于各类车辆上。图3-2 一般的对称式圆锥行星齿轮差速器1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮垫片;7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳4.2 对称式圆锥行星齿轮差速器的设计由于在差速器壳上装着主减速器从动齿轮,因此在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓

34、尺寸也受到主减速器从动齿轮轴承支承座及主动齿轮导向轴承座的限制。4.2.1 差速器齿轮的差不多参数的选择1.行星齿轮数目的选择载货汽车采纳4个行星齿轮。2.行星齿轮球面半径的确定圆锥行星齿轮差速器的结构尺寸,通常取决于行星齿轮的背面的球面半径,它确实是行星齿轮的安装尺寸,实际上代表了差速器圆锥齿轮的节锥距,因此在一定程度上也表征了差速器的强度。 球面半径可按如下的体会公式确定: mm (4.1) 式中:行星齿轮球面半径系数,可取2.522.99,关于有4个行星齿轮的载货汽车 取小值; T运算转矩,取Tce和Tcs的较小值,T =13612.7Nm.依照上式=2.6=62mm 因此预选其节锥距A=62mm3.行星齿轮与半轴齿轮的选择为了获得较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少。但一样许多于10。半轴齿轮的齿数采纳1425,大多数汽车的半轴齿轮与行星齿轮的齿数比/在1.52.0的范畴内。差速器的各个行星齿轮与两个半轴齿轮是同时啮合的,因此,在确定这两种齿轮齿数时,应考虑它们之间的装配关系,在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数,之和必须能被行星齿轮的数目所整除,以便行星齿轮能平均地分布于半轴齿轮的轴线周围,否则,差速器将无法安装,即应满足的安装条件为: (4.2)式中:,左右半轴齿轮的齿数,关于对称式圆锥齿轮差速器来说

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号