《第二十一章二次根式.doc》由会员分享,可在线阅读,更多相关《第二十一章二次根式.doc(6页珍藏版)》请在三一办公上搜索。
1、第二十一章 二次根式 教材内容 1本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式 2本单元在教材中的地位和作用:它也是今后学习其他数学知识的基础 教学目标 1知识与技能 (1)理解二次根式的概念 (2)理解(a0)是一个非负数,()2=a(a0),=a(a0) (3)掌握(a0,b0),=;=(a0,b0),=(a0,b0) (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减 教学难点 1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用 2二次根式的乘法、除法的条件限制 3利用最简二次根式的概念把一个二次根式化成最简
2、二次根式211 二次根式第一课时 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 合作探究 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_二、合作探究因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、-、(x0,y0)
3、分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0 例2当x是多少时,在实数范围内有意义? 例3当x是多少时,+在实数范围内有意义? 例4(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2010+b2010的值 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数达标测试 一、选择题 1下列式子中,是二次根式的是( ) A- B C Dx 2下列式子中,不是二次根式的是( ) A B C D 3已知一个正方形的面积是5,那么它的边长是( ) A5 B
4、 C D以上皆不对 二、填空题 1形如_的式子叫做二次根式 2面积为a的正方形的边长为_ 3负数_平方根 三、综合提高题 1某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少? 2当x是多少时,+x2在实数范围内有意义? 3若+有意义,则=_ 4.使式子有意义的未知数x有( )个 A0 B1 C2 D无数5.已知a、b为实数,且+2=b+4,求a、b的值21.1 二次根式(2)第二课时 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体
5、数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0)重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立 合作探究 一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a0时,有意义吗? 二、探究新知 (a0)是一个什么数呢? (a0)是一个非负数 做一做:根据算术平方根的意义填空:
6、()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_()2=a(a0)学生活动)填空: =_;=_;=_;=_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 计算 1()2 2(3)2 3()2 4()2 三、达标测试 计算下列各式的值:()2 ()2 ()2 ()2 (4)2例2 化简 (1) (2) (3) (4) 四、应用拓展例3 计算:1()2(x0); 2()2 ;3()2 ; 4()2所以上面的4题都可以运用()2=a(a0)的重要结论解题例4在实数范围内分解下列因
7、式:(1)x2-3 (2)x4-4 (3) 2x2-3例5 填空:当a0时,=_;当aa,则a可以是什么数?例6当x2,化简- 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 达标测试 一、选择题 1下列各式中、,二次根式的个数是( ) A4 B3 C2 D1 2数a没有算术平方根,则a的取值范围是( ) Aa0 Ba0 Ca0 Da=0 二、填空题 1(-)2=_ 2已知有意义,那么是一个_数 三、达标测试 1计算(1)()2 (2)-()2 (3)()2 (4)(-3)2 (5) 2把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x0)3已知+=0,求xy的值 4在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-55先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下: 甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17两种解答中,_的解答是错误的,错误的原因是_6若1995-a+=a,求a-19952的值(提示:先由a-20000,判断1995-a的值是正数还是负数,去掉绝对值)7. 若-3x2时,试化简x-2+。