正多边形和圆.ppt

上传人:laozhun 文档编号:4520336 上传时间:2023-04-25 格式:PPT 页数:18 大小:2.14MB
返回 下载 相关 举报
正多边形和圆.ppt_第1页
第1页 / 共18页
正多边形和圆.ppt_第2页
第2页 / 共18页
正多边形和圆.ppt_第3页
第3页 / 共18页
正多边形和圆.ppt_第4页
第4页 / 共18页
正多边形和圆.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《正多边形和圆.ppt》由会员分享,可在线阅读,更多相关《正多边形和圆.ppt(18页珍藏版)》请在三一办公上搜索。

1、正多边形和圆,问题1,什么样的图形是正多边形?,各边相等,各角也相等的多边形是正多边形.如果一个正多边形有n条边,那么这个正多边形叫做正n边形。,活动1,问题2:正多边形具有轴对称、中心对称吗?,正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。,边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心。,O,A,C,D,B,如果我们以正多边形对应顶点的连线的交点作为圆心,交点到顶点的连线为半径作一个圆.很明显,这个正多边形的各个顶点都在这个圆上.如图,正方形ABCD,连结AC、BD交于点O,以O为圆心,OA为半径作圆,那么肯定B、C、D都在这个圆上,活动2

2、,问题3:你知道正多边形与圆的关系吗?,正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,依此连接弧的端点就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.,A,B,C,D,E,如图,把O分成相等的5段弧,依次连接各等分点得到五边形ABCDE.,AB=BC=CD=DE=EA,A=B.,同理B=C=D=E.,又五边形ABCDE的顶点都在O上,五边形ABCD是O的内接正五边形,O是五边形ABCD的外接圆.,我们以圆内接正五边形为例证明.,.,O,中心角,半径R,边心距r,正多边形的中心:一个正多边形的外接圆的圆心.,正多边形的半径:外接圆的半径,正多边形的中心角:正多边形的每

3、一条边所对的圆心角.,正多边形的边心距:中心到正多边形的一边的距离.,抢答题:,1、O是正圆与圆的圆心。,ABC的中心,它是ABC的,2、OB叫正ABC的,它是正ABC的 圆的半径。,3、OD叫作正ABC的,它是正ABC的 圆的半径。,D,外接,内切,半径,外接,边心距,内切,4、正方形ABCD的外接圆圆心O叫做正方形ABCD的,5、正方形ABCD的内切圆的半径OE叫做正方形ABCD的,A,B,C,D,.O,E,中心,边心距,6、O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的。,7、AOB叫做正五边形ABCDE的角,它的度数是,边心距,中心角,72,8、图中正六边形A

4、BCDEF的中心角是它的度数是,9、你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?,B,A,AOB,60,B,.,O,中心角,B,G,边心距把AOB分成2个全等的直角三角形,设正多边形的边长为a,半径为R,它的周长为.,R,a,A,L=na,例 有一个亭子,它的地基半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).,解:如图由于ABCDEF是正六边形,所以它的中心角等于,OBC是等边三角形,从而正六边形的边长等于它的半径.,因此,亭子地基的周长,l=46=24(m).,在RtOPC中,OC=4,PC=,利用勾股定理,可得边心距,亭子地基的面积,O,A,B,C,D,

5、E,F,R,P,r,活动3,练习,1.矩形是正多边形吗?菱形呢?正方形呢?为什么?,矩形不是正多边形,因为四条边不一定相等;,菱形不是正多边形,因为四个角不一定相等;,正方形是正多边形因为四条边都相等,四个角都相等.,活动4,2.各边相等的圆内接多边形是正多边形?各角都相等的圆内接多边形呢?如果是,说明为什么;如果不是,举出反例.,各边相等的圆内接多边形是正多边形.,多边形A1A2A3A4An是O的内接多边形,且A1A2=A2A3=A3A4=An1An,多边形A1A2A3A4An是正多边形.,A1,A,A,A,A,A,A,An,O,3.分别求出半径为R的圆内接正三角形,正方形的边长,边心距和面积.,解:作等边ABC的BC边上的高AD,垂足为D,连接OB,则OB=R,在RtOBD中 OBD=30,边心距OD=,在RtABD中 BAD=30,A,B,C,D,O,解:连接OB,OC 作OEBC垂足为E,OEB=90 OBE=BOE=45,在RtOBE中为等腰直角三角形,A,B,C,D,O,E,小结:,1正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距,2正多边形的半径、中心角、边长、正多边的边心距之间的等量关系,3运用以上的知识解决实际问题,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 文秘知识


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号