初中数学一题多解题.doc

上传人:牧羊曲112 文档编号:4523691 上传时间:2023-04-25 格式:DOC 页数:64 大小:638.50KB
返回 下载 相关 举报
初中数学一题多解题.doc_第1页
第1页 / 共64页
初中数学一题多解题.doc_第2页
第2页 / 共64页
初中数学一题多解题.doc_第3页
第3页 / 共64页
初中数学一题多解题.doc_第4页
第4页 / 共64页
初中数学一题多解题.doc_第5页
第5页 / 共64页
点击查看更多>>
资源描述

《初中数学一题多解题.doc》由会员分享,可在线阅读,更多相关《初中数学一题多解题.doc(64页珍藏版)》请在三一办公上搜索。

1、 初中数学一题多解题例题一、两个连续奇数的积是323,求出这两个数方法一、设较小的奇数为x,另外一个就是x+2x(x+2)=323解方程得:x1=17,x2=-19所以,这两个奇数分别是:17、19,或者-17,-19方法二、设较大的奇数x,则较小的奇数为323/x则有:x-323/x=2解方程得:x1=19,x2=-17同样可以得出这两个奇数分别是:17、19,或者-17,-19方法三、设x为任意整数,则这两个连续奇数分别为:2x-1,2x+1(2x-1)(2x+1)=323即4x2-1=323x2=81x1=9,x2=-92x1-1=17,2x1+1=192x2-1=-19,2x2+1=-

2、17所以,这两个奇数分别是:17、19,或者-17,-19方法四、设两个连续奇数为x-1,x+1则有x2-1=323x2=324=4*81x1=18,x2=-18x1-1=17,x1+1=19x2-1=-19,x2+1=-17所以,这两个奇数分别是:17、19,或者-17,-19例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少钱 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x、y、z元,则根据题意,得 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x、y、z的值是不可能的,但

3、注意到所求的是的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1:,得 ,得 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需元(下面解法后的答均省略) 解2:原方程组可变形为 解之得: 2. 主元法 解3:视x、y为主元,视z为常数,解、 得, 解4:视y、z为主元,视x为常数,解、 得 解5:视z、x为主元,视y为常数,解、 得 3. “消元”法 解6:令,则原方程组可化为 解7:令,则原方程组可化为 解8:令,则原方程组可化为 4. 参数法 解9:设,则 ,得 ,得 由、得 即 5. 待定系数法 解10. 设 则比较两边对应项系数,得 将其代入中,得 附练习题 1. 有大小两种货

4、车,2辆大车与3辆小车一次可以运货吨;5辆大车与6辆小车一次可以运货35吨。求3辆大车与5辆小车一次可以运货多少吨(答案:吨) 2. 有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需元;若购甲4件、乙10件、丙1件共需元。问若购甲、乙、丙各1件共需多少元(答案:元)平面几何在完成一个数学题的解答时,有必要对该题的内容、形式、条件、结论,做进一步的探讨,以真正掌握该题所反映的问题的实质。如果能对一个普通的数学题进行一题多变,从变中总结解题方法;从变中发现解题规律,从变中发现“不变”,必将使人受益匪浅。“一题多变”的常用方法有:1、变换命题的条件与结论;2、保留条件,深化结论;3、减弱条件,加

5、强结论;4、探讨命题的推广;5、考查命题的特例;6、生根伸枝,图形变换;7、接力赛,一变再变;8、解法的多变等。19、(增加题1的条件)AE平分BAC交BC于E,求证:CE:EB=CD:CB20、(增加题1的条件)CE平分BCD,AF平分BAC交BC于F求证:(1)BFCE= BEDF (2)AECF (3)设AE与CD交于Q,则FQBC21、已知,ABC中,ACB=90度,CDAB,D为垂足,以CD为直径的圆交AC、BC于E、F,求证: CE:BC=CF:AC(注意本题和16题有无联系)22、已知,ABC中,ACB=90度,CDAB,D为垂足,以AD为直径的圆交AC于E,以BD为直径的圆交B

6、C于F,求证: EF是O1和O2的一条外公切线23、已知,ABC中,ACB=90度,CDAB,D为垂足,作以AC为直径的圆O1,和以CD为弦的圆O2,求证:点A到圆O2的切线长和AC相等(AT=AC)24、已知,ABC中,ACB=90度,CDAB,D为垂足,E为ACD的中点,连ED并延长交CB的延长线于F,求证:DF:CF=BC:AC25、如图,O1与O2外切与点D,内公切线DO交外公切线EF于点O,求证:OD是两圆半径的比例中项。题14解答:因为CD2=ADDB AC2=ADAB BC2=BDAB所以1/AC2+1/BC2=1/(ADAB)+1/(BDAB)=(AD+DB)/(ADBDAB)

7、=AB/ADBDAB=1/ADBD=1/CD215题解答:因为M为AB的中点,所以AM=MB,AD-DB=AM+DM-(MB-DM)=2DMAC2-BC2=AD*AB-DB*AB =(AD-DB)AB =2DM*AB26、(在19题基础上增加一条平行线)已知,ABC中,ACB=90度,CDAB,D为垂足,AE平分BAC交BC于E、交CD于F,FGAB交BC于点G,求证:CE=BG27、(在19题基础上增加一条平行线)已知,ABC中,ACB=90度,CDAB,D为垂足,AE平分BAC交BC于E、交CD于F,FGBC交AB于点G,连结EG,求证:四边形CEGF是菱形28、(对19题增加一个结论)已

8、知,ABC中,ACB=90度,CDAB,D为垂足,AE平分BAC交BC于E、交CD于F,求证:CE=CF29、(在23题中去掉一个圆)已知,ABC中,ACB=90度,CDAB,D为垂足,作以AC为直径的圆O1, 求证:过点D的圆O1的切线平分BC30、(在19题中增加一个圆)已知,ABC中,ACB=90度,CDAB,D为垂足,AE平分BAC交BC于E,交CD于F,求证:CED平分线段AF31、(在题1中增加一个条件)已知,ABC中,ACB=90度,CDAB,D为垂足,A=30度,求证:BD=AB/4(沪科版八年级数学第117页第3题)32、(在18题基础上增加一条直线)已知,ABC中,ACB=

9、90度,CDAB,D为垂足,作BCE=BCDP为AC上任意一点,直线PQ交CD于Q,交CB于M,交CE于N求证:PQ/PN=QM/MN32题证明:作NSCD交直线AC与点S,则PQ/PN=CQ/SN又BCE=BCDQM/MN=CQ/CN(三角形内角平分线性质定理)BCE+NCS=BCD +ACDNSCD,NSC=ACDNSC=NCSSN=CNPQ/PN=QM/MN题33在“题一中”,延长CB到E,使EB=CB,连结AE、DE,求证:DEAB= AEBE题33证明CB2= BDAB因EB=CBEB2= BDABEB:BD=AB:BE又EBD=ABEEBDABEEB:AB=DE:AEDEAB= A

10、EBE题34(在19题基础上增加一条垂线)已知,ABC中,ACB=90度,CDAB,D为垂足,AE平分CD于F,EGAB交AB于点G,求证:EG2= BEEC证明:延长AC、GE,设交点为H,EBGEHCEB:EH=EG:ECEHEG= BEEC又HGCD,CF=FDEH=EGEG2= BEEC题35(在题19中增加点F)已知,ABC中,ACB=90度,CDAB,D为垂足,AE平分BCA交BC于点E,交CD于F,求证:2CFFD = AFEF题36、(在题16中,减弱条件,删除ACB=90度这个条件)已知,ABC中, CDAB,D为垂足,DEAC于E,DFBC于F,求证:CE/BC=CF/AC

11、题37(在题17中,删除ACB=90度和CDAB,D为垂足这两个条件,增加D是AB上一点,满足ACD=ABC)已知,ABC中,D是AB上一点,满足ACD=ABC,又CE平分BCD求证:AE2= ADAB题38已知,ABC中,ACB=90度,CDAB,D为垂足,PC为ABC的切线求证:PA/AD=PB/BD 题39(在题19中点E“该为E为BC上任意一点”)已知,ABC中,ACB=90度,CDAB,D为垂足,E为BC上任意一点,连结AE,CFAE,F为垂足,连结DF,求证:ADFAEB题40:已知,ABC中,ACB=90度,CDAB,D为垂足求证:SADC:SBDC=AD:DB题41已知,如图,

12、ABC中, CDAB,D为垂足,且AD/CD=CD/BD, 求ACB的度数。题42 已知,CD是ABC的AB边上的高, D为垂足,且AD/CD=CD/BD, 则ACB一定是90度吗为什么题43:已知,ABC中,ACB=90度,CDAB,D为垂足,ADC的内切圆O1,BDC的内切圆O2,求证:SO1:SO2=AD:DB题44:已知,ABC中,ACB=90度,CDAB,D为垂足,ADC的内切圆O1的半径R1,BDC的内切圆O2的半径R2,ABC的内切圆O的半径R,求证:R1+R2+R=CD 题45、已知,ABC中,ACB=90度,CDAB,D为垂足,作以AC为直径的圆O1,和以BD为直径的圆O2,

13、设O1和O2在ABC内交于P求证: PAD的面积和PBC的面积相等题45解:CAP=CDP=DBP(圆周角、弦切角)RtAPCRtBPDAPPD= BPPC又APD和CPB互补(APC+BPD=180度)S PAD=1/2APPDsinAPDS PBD=1/2BPPCsinCPBS PAD= S PBD题46(在题38的基础上变一下)已知,ABC中,ACB=90度,CDAB,D为垂足,PC为ABC的切线,又CE平分ACB交ABC与E,交AB与D , 若PA=5,PC=10,求 CDCE的值题47在题46中,求sinPCA题48(由题19而变)已知,ABC中,ACB=90度,CDAB,D为垂足,

14、AE平分ACB交BC于E,EGAB交AB于点G,求证:(1)AC=AG(2)、AG2= ADAB(3)、G在DCB的平分线上(4)、FGBC(5)、四边形CEFG是菱形题49题49解答:题目50(题33再变)已知,ABC中,ACB=90度,CDAB,D为垂足,延长CB到E,使EB=CB,连结AE交CD的延长线于F,如果此时AC=EC,求证: AF= 2FE题50解:过点E作EMCF,M为垂足,则AD:DB=AC2:CB2=4:1又DB:EM=1:2所以,AD:EM=2:1ADFEMFAF:EF=AD:EM=2:1AF=2EF题目51(题50中连一线)已知,ABC中,ACB=90度,CDAB,D

15、为垂足,延长CB到E,使EB=CB,连结AE交CD的延长线于F,连结FB,如果此时AC=EC,求证: ABC=EBF(题51的几种解法)解法1、作ACB的平分线交AB于点G,易证ACGCEFCG=EF证CBGEBFABC=EBF题51解法2作ACB的平分线交AB于点G,交AE于点P,则点G 为ACE的垂心,GFCE又AEC=GCE,四边形CGFE为等腰梯形CG=EF再证CBGEBFABC=EBF题51解法3作ACB的平分线交AB于点G,交AE于点P,则点G 为ACE的垂心,易证APGCPF(AAS)PG=PF又GPB=FPB,PB=PBPBGFBP(SAS)PBG=FBPABC=EBF题51解

16、法4(原题图)由题50得,AF=2EFAF:EF=AC:BE=2又CAF=BEF=45度ACFEBFACF=EBF又ACF=CBAABC=EBF题51解法5作MECE交CD的延长线于M,证ABCCME(ASA)ABC=M再证MEFBEF(SAS)EBM=MABC=EBF题51解法6作点B关于点C的对称点N,连结AN,则NB=2BE,又由题50,AF=2EF,BFANEBM=N又ABC=N(对称点)ABC=EBF题51解法7过点C作CHBF交AB于M,B为CE的中点, F为HE的中点又由题50,AF=2EF,H为AF的中点又CHBFM为AB的中点MCB=MBC又EBM=MCBABC=EBF题目5

17、2(题50、51结论的引伸)已知,ABE中,AC=EC,ACE=90度,CDAB交斜边AB于F,D为垂足,B为CE的中点,连结FB, 求证:(1)、AF=2EF(2)、ABC=EBF(3)、EBF= E+BAE(4)、ABF=2DAC(5)、AB:BF=AE:EF(6)、CD:DF=AE:AF(7)、AD:DB=2AF:EF(8)、CD/DFFA/AEEB/BC=1题目53 (题52的一部分) 已知如图,、AC=CE、ACCE、CB=BE、CFAB求证:、AF=2EF、ABC=EBF(题53的14个逆命题中,是真命题的请给出证明)题目54(题53的逆命题1)已知如图,、AF=2EF、ACCE、

18、CB=BE、CFAB求证:、AC=CE、ABC=EBF平面几何一题多变题目55(题53的逆命题2)已知如图,、AC=CE、AF=2EF、CB=BE、CFAB求证:、ACCE、ABC=EBF题目56(题53的逆命题3)已知如图,、AC=CE、ACCE、AF=2EF、CFAB求证:、CB=BE、ABC=EBF题目57(题53的逆命题4)已知如图,、AC=CE、ACCE、AF=2EF、CB=BE求证:、CFAB、ABC=EBF题目58(题53的逆命题5)已知如图,、CB=BE、ABC=EBF、ACCE、CFAB求证:、AF=2EF、AC=CE题目59(题53的逆命题6)已知如图,、AC=CE、CFA

19、B、CB=BE、ABC=EBF求证:、AF=2EF、ACCE题目60(题53的逆命题7)已知如图,、AC=CE、ACCE、ABC=EBF、CFAB求证:、AF=2EF、CB=BE题目61(题53的逆命题8)已知如图,、AC=CE、ACCE、CB=BE、ABC=EBF求证:、AF=2EF、CFAB题目62(题53的逆命题9)已知如图,、AF=2EF、CFAB、CB=BE、ABC=EBF求证:、AC=CE、ACCE题目63(题53的逆命题10)已知如图,、ACCE、AF=2EF、CFAB、ABC=EBF求证:、AC=CE、CB=BE题目64(题53的逆命题11)已知如图,、CB=BE、ABC=EB

20、F、ACCE、AF=2EF求证:、AC=CE、CFAB题目65(题53的逆命题12)已知如图,、AC=CE、AF=2EF、CFAB、ABC=EBF求证:、ACCE、CB=BE题目66(题53的逆命题13)已知如图,、AC=CE、AF=2EF、CB=BE、ABC=EBF求证:、ACCE、CFAB题目67(题53的逆命题14)已知如图,、AC=CE、ACCE、AF=2EF、ABC=EBF求证:、CB=BE、CFAB题目68已知如图,ABC中,ACB=90度,CDAB,D为垂足,CM平分ACB,如果SACM=30,SDCM=6,求SBCD=(题68解答)解:设SBCD=x,则SACM/ SCMB=3

21、0/(6+ x)=AM/MBSACD/ SCDB=36/ x=AD/DB又AC2= ADABBC2= BDABAC2/ BC2=AD/BDCM平分ACB(AM/ BM)2=AD/BD30/(6+x)2=36/x解方程得x=4或x=9SBCD=4或SBCD=9题目69已知如图,ABC中,ACB=90度,D 为斜边AB上一点,满足AC2= ADAB求证:CDAB题目70已知如图,ABC中,ACBC,ACB=90度,CM平分ACB,且CM+CB=AC,求证:1/AC-1/BC=2 题70证明:过点M作MDBC,D为垂足,作MDAC,E为垂足,设ME=x,AC=b,BC=a,则CM=2 x,AE=b-

22、x,由AE/AC=ME/BC,得(b-x)/b=x/a,x=ab/(a+b)又CM+CB=AC2 x+a=b,ab/(a+b)=(b-a)/ 2整理得:b2-a2=2ab两边都除以ab,1/AC-1/BC=2题目71(依题68变)已知如图,ABC中(ACBC),ACB=90度,CDAB,D为垂足,CM平分ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。题目71解:显然,方程x2-14x+48=0的两根为6和8,又ACBCAC=8,BC=6由勾股定理AB=10ACDABC,得AC2= ADABAD=CM平分ACBAM/MB=AC/CB解得,AM=40/7MD=AD-A

23、M=24/35题目72已知如图,ABC中,ACB=90度,AB=2AC,现在将它折成如右图的形状,这时顶点A正好落在BC上,而且AMN是正三角形,求AMN与ABC的面积之比。题72解:ACB=90度,AB=2ACB=30度由题意,四边形AMAN是菱形,ABMABCAM/AC=BM/AB设AM=x, AB=2AC=2ax/a=(2a-x)/2ax=2a/3由三角形面积公式,得SAMN:SABC=2:9题目73已知,ABC中,ACB=90度,CDAB,D为垂足求证:AB+CDAC+BC题73的证明:由三角形面积公式,得ABCD=ACBC2ABCD=2ACBC又勾股定理,得AB2=AC2+BC2AB

24、2+2ABCD =AC2+BC2+2ACBC(等式性质)AB2+2ABCD =(AC+BC)2AB2+2ABCD+CD2 (AC+BC)2(AB+CD)2 (AC+BC)2又AB、CD、AC、BC均大于零AB+CDAC+BC题目74已知,ABC中,ACB90度,CDAB,D为垂足求证:AB+CDAC+BC题74证明:如图,作CBAC交AB于B,于是有ABCD=ACBC2ABCD=2ACBC又勾股定理,得AB2=AC2+BC2AB2+2ABCD =AC2+BC2+2ACBC(等式性质)AB2+2ABCD =(AC+BC)2AB2+2ABCD+CD2 (AC+BC)2(AB+CD)2 (AC+BC

25、)2又AB、CD、AC、BC均大于零AB+CDAC+BC在ABB中,BBCB-CB+得AB BB+CDAC+BC CB-CBAB+CDAC+BC题目75已知如图,ABC中, CDAB,D为垂足,CT平分ACB,CM为AB边上的中线,且ACD=DCT=TCM=MCB求证:ACB=90度题目75的证明:延长CT交三角形ABC的外接圆于N,连结MN,则N为弧AB的中点,所以MNAB,又CDAB,MNCDDCT=TNM又DCT=TCMTCM=TNMCM=NMCN的垂直平分线必过点M,又CM为AB边上的中线,MNABAB的垂直平分线必过点M,即M为两条弦的垂直平分线的交点,M为三角形ABC的外接圆的圆心

26、,因此AB为ABC的外接圆的直径。ACB=90度题目76已知,ABC中,ACB=90度,CDAB,D为垂足,ACB 的平分线CG交AB边上的中垂线于点G , 求证:MC=MG 题目77已知,ABC中,ACB=90度,CDAB,D为垂足,CM为AB边上的中线,CD是ACB 的平分线,AC=75cm, BD=80cm,求CD、CM、CE的长题目78已知,ABC中,ACB=90度,CDAB,D为垂足,E为ABC上一点,且弧AC=弧CE,又AE交CD于M,求证:AM=CM题目79(题78再变)已知,ABC中,ACB=90度,CDAB,D为垂足,E为ABC上一点,且弧AC=弧CE,又BC交AE于G,连结

27、BE求证:BG2= ABBE- AGGE题目80已知,ABC中,ACB=90度,CDAB,D为垂足,E为ABC上一点,且直线DC于直线BE交于P,求证:CD2= DMDP题目81已知,ABC中,ACB=90度,CDAB,D为垂足,E为ABC上一点,且直线DC于直线BE交于P,如果CD平分AE,求证: 2DMDP= BEEP题目82已知,ABC中,ACB=90度,CDAB,D为垂足,E为ABC上一点,且弧AC=弧CE,又直线AC与直线BE交于H,求证: AB=BH题目83(由题44变)求证:直角三角形两条直角边的和等于斜边与内切圆直径的和。题目84已知,ABC中,ACB=90度,CDAB,D为垂

28、足,MN切ABC与C点求证: BC平分DCN题目85已知,ABC中,ACB=90度,CDAB,D为垂足,MN切ABC与C点,AFMN,F为垂足,AEMN,E为垂足,求证:CD=CE=CF 题目86已知,ABC中,ACB=90度, 以BC为直径的圆交AB于点D,以AC为半径的圆交AB于点E, 求证:BCE=DCE题目87(由题38图而变)求证:和两定点距离之比等于定比(不为1)的点的轨迹是一个圆周。(提示:从(1)完备性、(2)纯粹性 两方面来证明。)题目88作图题:已知两线段之和及积,求作这两条线段。已知:两线段m和n求作:两线段x及y,使x+y=m,xy=n2补个图(题88作法参考)AD、B

29、D即为求作线段x、y题目89(由题88变)已知梯形ABCD如图,求作一直线平行于梯形的底边,且平分面积。题目90利用下图,证明:两个正数之和为定值,则这两个数相等时乘积最大。题目89作法:如图,作两腰的延长线交于点O,作PBAB使PB=OA,连结OP,以OP为直径作半圆M,由圆心M作MNOP,交半圆于点N,再以O为圆心ON为半径画弧交AB于点E,作EFBC交CD于F,则EF即为所求线段。 题91(题73变)设a、b、c、d都是正数,满足a/b=c/d,且a最大,求证:a+db+c题92(人教版数学八年级下114页)在RtABC中,ACB=90度,CDAB,D为垂足,ACD=3BCD,E是斜边A

30、B的中点,ECB是多少度题93(题49变)已知,17cosA+13cosB=17,17sinA=13sinB,且A、B都是锐角,求A/2+B的值。题目93解:(构造法)分别以17、13为边作ABC,使AC=17,BC=13,CD为AB边上的高,在RtADC中,AD=17 cosA,在RtBDC中,BD=13 cosB,CD=17sinA=13sinB而AB=AD+DB=17cosA+13cosB=17,AC=AB, B=ACB,A+2B=180度A/2+B=90度。题94已知如图,ABC的C的平分线交AB于D,交ABC的外接圆于E,若CDCE等于ABC面积的2倍求证:ACB=90度题目95已知

31、,ABC中,ACB=90度,CDAB,D为垂足,CM平分ACB 交AB于M,若ACBC求证:DCM=1/2(B-A)题目96已知,ABC中,ACB=90度,CDAB,D为垂足,CE为AB边上的中线,且DE=DC,求ABC中较小的锐角的度数。题目97已知,ABC中,ACB=90度,CE平分ACB 交AB于E,且EC+BC=AC, 求AC/BC题97解:设BC=a,AC=b,过点E作EHBC交AC于点H,作EFBC交BC于点F,则四边形CHEF为正方形,设EH=x.则CE=2x,由AH/EH=AC/BC,得(b-x)/x=b/a, x=(ab)/(a+b)由题意得,a+2x=bx=(b-a)/ 2

32、a,(ab)/(a+b)= (b-a)/ 2a,得b2-2ab-a2=0b/a=(2+6)/2即AC/BC=(2+6)/2题目98已知,ABC中,ACB=90度,两直角边的差为22,CDAB,D为垂足,BD-AD=23,求ABC中的三边长。题目99 圆内接三角形ABC中,直径AB=4,AB边上的高CD=23,求A的度数。题目100已知,ABC中, CDAB,D为垂足,B=2A求证:CB=AD-BD题目101已知,AB是的直径,AB=4, D是OB的中点,过点D的弦CEAB,求弦CE的长。(题54的解答)已知如图,、AF=2EF、ACCE、CB=BE、CFAB求证:、AC=CE、ABC=EBF证

33、明:过点E作EMCF如图,由ADFEMF得AD:EM=AF:FM=2又BD为CEM的中位线,则BD:EM=1:2AD:DB=4:1=AC2:CB2AC:CB=2:1又CB=BEAC=CE(再由51的解答即有ABC=EBF成立)题55的解答已知如图,、AC=CE、AF=2EF、CB=BE、CFAB求证:、ACCE、ABC=EBF证明:过点E作EMCF,如图由ADFEMF得AD:EM=AF:FM=2又BD为CEM的中位线,则BD:EM=1:2AD:DB=4:1不妨设DB=x,CD=y,则AD=4x,由勾股定理得AC=(4x)2+y2,BC=(x2+y2)又AC=2BC,得y2=4x2即CD2=AD

34、DBCD:AD=DB:CD,ADC=CDB=90度 RtADCRtCDBACD=CBD又BCD+CBD=90度BCD+ACD=90度,即ACB=90度(再证ABC=EBF成立)题目102初中三年级中考复习平面几何证明题一题多解如图:已知青AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC于D。求证:FD=DE。分析:本题有好多种证明方法,由于新课标主要用对称、旋转方法证明,但平行四边形的性质、平行线性质等都是证题的好方法,我在这里向初中三年级同学面对中考需对平面几何证明题的证明方法有一个系统的复习和提高。下边我将自己证明这道题的方法给各位爱好者作以介绍,希望各位有所收获,仔细体会

35、每中方法的异同和要点,从中能得到提高。我是一位数学业余爱好者,不是学生,也不是老师,如有错误,请批评指证。信箱:证法一 证明:过E点作EM AB交DC延长线于M点,则M=B,又因为ACB=BACB=ECM=M,所以CE=EM, 又EC=BF 从而EM=BF,BFD=DEM则DBFDME,故 FD=DE;证法二 证明:过F点作FMAE,交BD于点M,则1=2 = B 所以BF=FM,又 4=3 5=E所以DMFDCE,故 FD=DE。证法三以BC为对称轴作BDF的对称BDN,连接NE,则DBFDBN,DF=DN,BN=BF,NFBD,FBD=NBD,又因为C=FBD所以NBD=C。 BNCE,C

36、E=BF=BN,所以四边形BNCE为平行四边形。故NFBC,所以NFNE,因FN衩BD垂直平分,故D是FE的中点,所以FD=DE。(也可证明D是直角NEF斜边的中点)。证法四:证明:在CA上取CG=CE,则CG=BF,AF=AG,所以FGDC,又因为1=2,所以FBCG为等腰梯形,所以FGDC,故DC是EGF的中位线。所以FD=DE。证法五证明:把EDC绕C点旋转180,得GMC,则EDCGMCCE=GC=BF连接FG,由于GC=BF,从而AF=AG,1=AFGFGBC,所以FBMG为等腰梯形,所以FGDC,故DC是EGF的中位线。所以FD=DE。证法六证明:以BC为对称轴作DCE的对称DCN,则和DCEDCN;CN=CE=BF2=3;又1=3,B=1所以2=B,BFCN,所以四边形BCNF为平行四边形,DC FG,1=4,所以2=4=CNG,所以 CG=CN=CE;故DC是DC是EGF的中位线。所以FD=DE。证法七证明:延长AB至G,使BG=CE,又因AB=AC, BF=CE则AG=AE 所以BCGE,则BD是FGE的中位线。所以FD=DE。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号