北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc

上传人:小飞机 文档编号:4525983 上传时间:2023-04-26 格式:DOC 页数:31 大小:716.50KB
返回 下载 相关 举报
北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc_第1页
第1页 / 共31页
北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc_第2页
第2页 / 共31页
北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc_第3页
第3页 / 共31页
北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc_第4页
第4页 / 共31页
北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc》由会员分享,可在线阅读,更多相关《北师大版八年级(上册)第四章一次函数压轴题专项练习(无答案).doc(31页珍藏版)》请在三一办公上搜索。

1、一次函数面积问题和点的存在性问题1、若一次函数 y=k1x-4 与正比例函数 y=k2x 的图像都经过点 P(2,-1).(1)分别求出这两个函数的解析式;(2)求这两个函数的图像与 x 轴所围成的三角形的面积.2、如图,已知 A(8,0)、B(0,6)、C(0,-2),连接 AB,过点 C 的直线 l 与 AB 相交于点 P.(1)如图,当 PB=PC 时,求点 P 的坐标.(2)如图,如果直线 l 交 x 轴于点 E,且 OC:OE=5:4,连结 AC,求点 E 的坐标及PAC 的面积.3、已知点 P(x,y)是第一象限的点,且 x+y=8,点 A 的坐标为(10,0),设OAP 的面积为

2、 S.(1)求 S 关于 x 的函数解析式,并写出自变量的取值围.(2)若OAP 的面积为 10,是否存在点 Q(3,a),使得PQA 的面积也等于 10. 若存在,请求出 a 的值;若不 存在,请说明理由.4、如图,在平面直角坐标系中,点 A、B 的坐标分别为(-3,0),(0,3).(1)某一次函数图像与 x、y 轴的交点分别为 P、Q,P、Q 在直线 AB 的同侧,且 Q 点的纵坐标大于 3,若PAB与QAB 的面积都等于 3,求这个一次函数的解析式.(2)在坐标轴上是否存在点 M,使MPQ 为等腰三角形,若存在,请求出点 M 的坐标(直接写出);若不存在, 说明理由.5、如图 12,直

3、线 y=kx-1 与 x 轴、y 轴分别交与 B、C 两点,OB:OC=(1) 求 B 点的坐标和 k 的值;(2) 若点 A(x,y)是第一象限的直线 y=kx-1 上的一个动点.当点 A 运动过程中,试写出AOB 的面积 S 与 x的函数关系式;(3) 探索:当点 A 运动到什么位置时,AOB 的面积是; 在成立的情况下,x 轴上是否存在一点 P,使POA 是等腰三角形.若存在,请写出满足条件的所有 P 点的坐标;若不存在,请说明理由.6、已知长方形 ABCO,O 为坐标原点,B 为坐标为(8,6),A、C 分别在坐标轴上,P 是线段 BC 上的动点,设PC=m,已知点 D 在第一象限且是

4、直线 y=2x+6 上的一点,若APD 是等腰直角三角形.(1)求点 D 的坐标.(2)直线 y=2x+6 向右平移 6 个单位后,在该直线上,是否存在点 D,使APD 是等腰直角三角形?若存在, 请写出这些点的坐标;若不存在,请说明理由.7、在平面直角坐标系中,取点 P(-1,1),Q(2,3). 在 x 轴上有一点 R,若使得 PR+QR 最小,求 R 点的坐标.变式练习:在平面直角坐标系中,取点 P(-1,1),Q(2,3). 在 y 轴上有一点 S,若使得|PS-QS|的值最大,求 S 点的坐标.在平面直角坐标系中,有四个点 A(-8,3),B(-4,5),C(0,n),D(m,0),

5、当四边形 ABCD 的周长最短时, 求 mn 的值.8、如图,在平面直角坐标系中,在矩形 ABCO 的边长 AB=8,BC=6,点 E 为 BC 的中点.(1)在 x 轴上是否存在点 P,使得 PA+PE 最小?求出点 P 的坐标;(2)线段 MN=2,且点 M、N 在线段 OC 上(M 在 N 的左边),当四边形 AMNE 的周长最短时,求 M、N 的坐标.9、如图,点 A 为(2,0),点 B 在直线 y=x 上,且横坐标为 x,过点 B 作 x 轴的垂线交直线 y = x 与点 C. 设ABC 的面积为 S.(1)求 S 关于 x 的函数关系式,并写出自变量的取值围;(2)设点 P 为

6、y=x 上的一点,点 Q 为直线 y = x 上的点,连接 AP、PQ,求 AP+PQ 的最小值,并求出此时 P和 Q 点的坐标.10.如图,在平面直角坐标系中,函数 y=2x+12 的图象分别交 x 轴、y 轴于 A、B 两点,过点 A 的直线交 y 轴正半轴于点 M,且点 M 为线段 OB 的中点(1)求直线 AM 的函数解析式(2)试在直线 AM 上找一点 P,使得 SABP=SAOB,请直接写出点 P 的坐标11.如图,一次函数 y=axb 与正比例函数 y=kx 的图象交于第三象限的点 A,与 y 轴交于 B(0,4)且 OA=AB,OAB 的面积为 6.(1)求两函数的解析式;(2

7、)若 M(2,0),直线 BM 与 AO 交于 P,求 P 点的坐标;(3)在 x 轴上是否存在一点 E,使 SABE=5,若存在,求 E 点的坐标;若不存在,请说明理由。北师大版八年级数学第四章 一次函数 压轴题专题训练1、已知:一次函数的图象经过点(2,1)和点(1,3)(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;(3)若一条直线与此一次函数图象相交于(2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;(4) 求这两条直线与x轴所围成的三角形面积2、如图是表示一骑自行车者和一骑摩托车者沿着相同路线由甲地到乙地行驶

8、过程中行驶时间与行驶距离变化的情况,已知甲,乙两地之间的距离是60千米,请你根据此图回答: (1)谁出发得较早?早多长时间?谁先到达? (2)从自行车出发开始,几小时后两人在途中相遇? (3)当摩托车出发后,在什么时间段,自行车在摩托车前?在什么时间段时,自行车在摩托车后?(4)设行驶时间为x(时),自行车与摩托车离开甲地的距离分别为y1(千米),y2(千米),分别写出x与y1,y2之间的函数关系式3、如图,直线的表达式为,且与轴交于点,直线经过点,直线、交于点(1)求点的坐标; (2)求直线的解析表达式; (3)求的面积;4、如图,已知直线与交于点(1,4),它们分别与轴交于、,。(1)求两

9、个函数的解析式; (2)若交轴于点,求四边形的面积。5、如图:正方形的边长为4,将此正方形置于平面直角坐标系中,使边落在轴的正半轴上,且点的坐标是(,)、直线经过点,且与轴交与点,求四边形的面积;、若直线经过点且将正方形分成面积相等的两部分求直线的解析式;、若直线经过点(,)且与直线平行,将中直线沿着轴向上平移2个单位交轴于点,交直线于点,求的面积。6、如图,在平面直角坐标系中,O为坐标原点,直线y=-x+3与x轴、y轴分别交于A,B两点点P从点A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒(1)求OA,OB的长(2)过点P与直线AB垂直的直线与y轴交于点E,在点P的运

10、动过程中,是否存在这样的点P,使EOPAOB?若存在,请求出t的值;若不存在,请说明理由 7、已知,如图,在平面直角坐标系,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6)(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF(矩形是长方形)设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);若矩形CDEF的面积为108,求出点C的坐标 8、如图直线L:y=x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4)

11、,动点M从A点以每秒1个单位的速度沿X轴向左移动.(1)求A、B两点的坐标;(2)求COM的面积S与M移动的时间t之间的函数关系式;(3)当t为何值时COMAOB,并求此时M点的坐标. 9、如图,平面直角坐标系中,原点为O,点A、M的坐标分别为(0,8)、(3,4),AM的延长线交x轴于点B点P为线段AO上的一个动点,点P从点O沿OA方向以1个单位/秒的速度向A运动,正方形PCEF边长为2(点C在y轴上,点E、F在y轴右侧)设运动时间为t秒(1)正方形PCEF的对角线PE所在直线的函数表达式为 (用含t的式子表示),若正方形PCEF的对角线PE所在直线恰好经过点M,则时间t为 秒(2)若正方形

12、PCEF始终在AOB部运动,求t的围(3)在条件(2)下,设PEM的面积为y,求y与t的函数表达式 10、如图,直线的解析式为,它与轴、轴分别相交于两点平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒()(1)求两点的坐标;(2)用含的代数式表示的面积;(3)以为对角线作矩形,记和重合部分的面积为,当时,试探究与之间的函数关系式;在直线的运动过程中,当为何值时,为面积的11、一次函数与坐标轴交于A、C两点,与过A点的直线与一次函数交于点B,求12、如图,直线y=kx+3与x轴、y轴分别交于A,B两点,点C是直线y=kx+3上与A,B

13、不重合的动点过点C的另一直线CD与y轴相交于点D,是否存在点C使BCD与AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由13、如图,直线与x轴、y轴分别交于A,B两点,C(1,2),坐标轴上是否存在点P,使SABP=SABC?若存在,求出点P的坐标;若不存在,请说明理由14、如图,已知直线m的解析式为,与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限作等腰RtABC,且BAC=90,点P为直线x=1上的动点,且ABP的面积与ABC的面积相等(1)求ABC的面积;(2)求点P的坐标15、如图,直线PA:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴

14、交于点B(1)求四边形PQOB的面积(2)直线PA上是否存在点M,使得PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由一次函数压轴题分类题型一:求解析式1.一次时装表演会预算中票价定位每100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;若要使这次表演会获得360

15、00元的毛利润,那么要售出多少门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入成本费用平安保险费)题型二:函数直线与行程相结合 2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。(1)B出发时与A相距_千米。(2)走了一段路后,自行车发生故障,进行修理,所用的时间是_小时。(3)B出发后_小时与A相遇。(4)求出A行走的路程S与时间t的函数关系式.(写出过程)(5)若B的自行车不发生故障,保持出发时的速度前进,_小时与A相遇,相遇点离B的出发点_千米。在图中表示出

16、这个相遇点C.3.在一条笔直的公路旁依次有A,B,C三个村庄,甲,乙两人同时分别从A,B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村。设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a=;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?4.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,设甲、乙两人离B地的距离y(Km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出

17、两地之间的距离为_Km;(2)直接写出Y甲,Y乙与X之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3Km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时X的取值围.题型三:函数(两车或两人距离变化函数图)5.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,设先出发车辆行驶的时间为x h,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图像解决一下问题:(1)慢车的速度为 km/h。快车的速度为 km/h;(2)求出点D的坐标并很据坐标解释图中点D的实际意义;(3)求快车出发多长时间时,两车之

18、间的距离为300km。6.一列动车从开往,一列普通列车从开往,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,根据图象进行一下探究:(1)两地相距_千米,两车出发后_小时相遇;(2)普通列车到达终点共需_小时,普通列车的速度是_千米/小时。(3)求动车的速度;(4)普通列车行驶t小时后,动车到达终点,求此时普通列车还需行驶多少千米到达?7.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道做匀速直线运动的模型。甲、乙两车同时分别从,两处出发,沿轨道到达处,在上,甲的速度是乙的速度的倍,设(分)后甲、乙

19、两遥控车与处的距离分别为,则,与的函数关系如图,试根据图象解决下列问题。(1)填空:乙的速度_米/分。(2分)(2)写出与的函数关系式。(3分)(3)若甲、乙两遥控车的距离超过米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰。(4分)题型四:与函数结合的动点问题8.如图所示,A、M、N点坐标分别为,动点P从点A出发,沿y轴以每秒一个单位长度的速度向上移动,且过点P的直线也随之移动,设移动时间为t秒.(1)当时,求l的解析式;(2)若点M,N分别位于l的异侧,试确定t的取值围.(3)直接写出t为何值时,PMN的周长最短。9.如图,直线y=kx+b与x轴、y轴分别交于B(2,

20、0),C(0,-4)两点,(1)求这条直线的表达式;(2)若点A事第一象限这条直线上的一个动点,则当点运动到什么位置是,AOB的面积是?(3)在(2)成立的情况下,x轴上是否存在点P,使APO是等腰三角形?若存在,求出点的坐标;若不存在,请说明理由。一次函数综合题1(2018秋历下区期中)如图,已知直线y=-x+3与x轴、y轴分别相交于点A、B,再将A0B沿直钱CD折叠,使点A与点B重合折痕CD与x轴交于点C,与AB交于点D(1)点A的坐标为;点B的坐标为;(2)求OC的长度,并求出此时直线BC的表达式;(3)直线BC上是否存在一点M,使得ABM的面积与ABO的面积相等?若存在,请直接写出点M

21、的坐标;若不存在,请说明理由2(2018秋长清区期中)已知,如图,在平面直角坐标系,点A的坐标为(0,8),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(6,2)(1)直接写出直线l1的表达式,l2的表达式;(2)点C为线段0B上一动点(点C不与点0,B重合),作CDy轴交直线l2于点D,设点C的横坐标为3,则点D的坐标为;设点C的横坐标为m,则点D的坐标为;(用含m的代数式表示)在的条件下,若CD=2,则m的值为3(2017秋历下区期末)如图,直线AB与坐标轴交与点A(0,6),B(8,0),动点P沿路线OBA运动(1)求直线AB的表达式;(2)当点P在OB上,使得AP平分O

22、AB时,求此时点P的坐标;(3)当点P在AB上,把线段AB分成1:3的两部分时,求此时点P的坐标4(2018历城区二模)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动(1)求直线l的解析式;(2)过点P作l的平行线交直线y=x于点D,当m=3时,求PCD的面积;(3)是否存在点P,使得PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由5(2018秋历下区期中)如图,直线y=kx+5经过点B(3,9)和A(-6,m)(1)求k,m的值;(2)求AOB的面积6(2018秋历城区期中)科技小组进行了机器人行走性能

23、试验,如图1,甲,乙两机器人分别从M,N两点同时同向出发,经过7分钟,甲,乙同时到达P点,乙机器人始终以60米/分的速度行走,图2是甲,乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图形,回答下列问题:(1)M,N两点之间的距离是米(2)求出M,P两点之间的距离(写出解答过程);(3)求甲前2分钟的速度(写出解答过程);(4)若前3分钟甲的速度不变,图2中,点F的坐标为;(5)若线段FGx轴,则此段时间甲的速度为米/分7(2017秋历下区期末)春节期间,小明一家乘坐飞机前往某市旅游,计划第二天租出租车自驾游公司租车收费方式甲每日固定租金80元,另外每小时收费15元

24、乙无固定租金,直接以租车时间计费,每小时租费30元(1)设租车时间为x小时(0x24),租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2与x间的关系式;(2)请你帮助小明计算并选择哪个公司租车合算8(2017秋长清区期末)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A地提速时距地面的高度b为 米(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?9(

25、2018春嘉祥县期末)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动(1)求直线AB的解析式(2)求OAC的面积(3)是否存在点M,使OMC的面积是OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由10(2017秋吉州区期末)如图,平面直角坐标系中,直线AB:yx+b交y轴于点A(0,1),交x轴于点B直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n)(1)求直线AB的解析式和点B的坐标;(2)求ABP的面积(用含n的代数式表示);(3)当SABP=2时,以PB为边在第一象

26、限作等腰直角三角形BPC,求出点C的坐标11(2018春单县期末)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线OAC运动(1)求直线AB的解析式(2)求OAC的面积(3)当OMC的面积是OAC的面积的时,求出这时点M的坐标12(2017秋牡丹区期末)如图,一次函数的图象与x轴和y轴分别交于点A和B,再将AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在x轴上有一点P,且PAB是等腰三角形,不需计算过程,直接写出点P的坐标13(2017秋盐湖区期末)如

27、图,在平面直角坐标系中,已知一次函数y=-2x+6的图象与x轴交于点A,与y轴交于点B(1)求点A的坐标;(2)求出OAB的面积;(3)直线AB上是否存在一点C,使AOC的面积等于OAB的面积?若存在,求出点C的坐标;若不存在,请说明理由14(2017秋金牛区校级期末)如图,在平面直角坐标系中,直线l1的解析式为y=-x,直线l2与l1交于点A(a,-a),与y轴交于点B(0,b),其中a,b满足(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得SAOP=SAOB,请求出点P的坐标;(3)已知平行于y轴且位于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点

28、M在点N的下方,点Q为y轴上一动点,且MNQ为等腰直角三角形,请直接写出满足条件的点Q的坐标15(2018春三原县期末)在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地,C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的图象如图所示(1)在上述变化过程中,自变量是,因变量是(2)乙车行驶的速度为千米/小时;(3)甲车到达B地停留了多久?B地与C地之间的距离为多少千米?16(2018春西岗区期末)甲、乙两个工程队分别同时修整两段公路,所

29、修公路的长度y(米)与修路时间x(时)之间的关系如图所示,根据图中提供的信息,解答下列问题:(1)甲队每小时修路米;乙队修路2小时后,每小时修路米;(2)修路6小时,甲比乙多修了米;(3)当修路时间是多少时,甲、乙两队所修公路的长度相同?17(2017秋福田区校级期末)在一条笔直的公路上有A、B两地甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象(1)A、B两地间的距离为km;(2)求乙与B地的距离y(k

30、m)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值围18(2017秋金牛区校级期末)如图,直线l1的解析式为,与x轴,y轴分别交于A,B;直线l2与x轴交于点C(2,0)与y轴交于点D(0,),两直线交于点P(1)求点A,B的坐标及直线l2的解析式;(2)求证:AOBAPC;(3)若将直线l2向右平移m个单位,与x轴,y轴分别交于点C、D,使得以点A、B、C、D为顶点的图形是轴对称图形,求m的值?19(2017秋广陵区期末)“低碳环保、绿色出行”的理念得到

31、广大群众的接受,越来越多的人喜欢选择自行车作为出行工具小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题(1)a=;b=;m=(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值围20(2018春九龙坡区校级期末)2017年

32、端午节期间,长寿湖上演规模空前的水陆空嘉年华甲、乙两队在比赛时的路程y(米)与时间t(分钟)之间的变量关系如图所示,请你根据图象,回答下列问题:(1)求乙与甲相遇时乙的速度;(2)求出在乙队与甲相遇之前,他们何时相距80米?21(2018春海珠区期末)明4月份想去某海岛度年假,通过网上收集资料发现,该海岛的两家度假酒店有特价房甲酒店:一次性付300元可以住5天,五天后续住,每天房费120元;乙酒店:前三天每天房费100元,三天后续住,每天的房费打八折设住酒店的天数为x天,总房费为y元(1)若明在乙酒店住4天,求房费;(2)分别写出住两家酒店的房费y(元)与住店天数x(天)的函数关系式;(3)若明确定去该海岛度假,选择哪家酒店可以节省房费22(2017秋赣榆区期末)某蔬菜基地要把一批新鲜蔬菜运往外地,现有汽车和火车两种运输方式可供选择方式一:使用汽车运输,装卸收费400元,另外每千米再加收4元;方式二:使用火车运输,装卸收费720元,另外每千米再加收2元(1)请分别写出用汽车、火车运输的总费用y1、y2(元)与运输路程x(千米)之间的函数表达式;(2)你认为选用哪种运输方式较好,为什么?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号