《[名校联盟]湖北省麻城市集美学校九年级数学下册课件:2722相似三角形应用举例.ppt》由会员分享,可在线阅读,更多相关《[名校联盟]湖北省麻城市集美学校九年级数学下册课件:2722相似三角形应用举例.ppt(30页珍藏版)》请在三一办公上搜索。
1、WXQ,27.2.2相似三角形应用举例,1.定义:2.定理(平行法):Z.X.X.K 3.判定定理一(边边边):4.判定定理二(边角边):5.判定定理三(角角):,1、判断两三角形相似有哪些方法?,2、相似三角形有什么性质?,对应角相等,对应边的比相等,WXQ,如图所示,ABCABC,其中 AB=10,AB=5,BC=12,那么BC=_?,A,B,C,A,B,C,因为ABCABC,,胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约多米。据考证,为建成大金字塔,共动用了万人花了年时间.原高米,但由于经过几千年的风吹雨打,
2、顶端被风化吹蚀.所以高度有所降低。,例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。学科网,如图272-8,如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO,解:太阳光是平行线,因此BAO=EDF,又 AOB=DFE=90ABODEF,2m,3m,201m,?,1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?ZXXK,解:设高楼的高度为X米,则,答:楼高36米.
3、,体验:,2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高 m。,8,给我一个支点我可以撬起整个地球!,-阿基米德,3.(深圳市中考题)小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动),A,D,B,C,E,0.8m,5m,10m,?,2.4m,例4.为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽
4、度PQ.,.数学兴趣小组测校内一棵树高,有以下两种方法:,C,D,E,A,B,方法一:如图,把镜子放在离树(AB)8M点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8M,观察者目高CD=1.6M;,2.数学兴趣小组测校内一棵树高,有以下两种方法:方法二:如图,把长为2.40M的标杆CD直立在地面上,量出树的影长为2.80M,标杆影长为1.47M。,分别根据上述两种不同方法求出树高(精确到0.1M),请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?,F,D,C,E,B,A,WXQ,课堂小结:,一、相似三角形的应用主要有如下两个方面 1 测高
5、(不能直接使用皮尺或刻度尺量的)2 测距(不能直接测量的两点间的距离),、测高的方法 测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决,、测距的方法 测量不能到达两点间的距离,常构造相似三角形求解,解决实际问题时(如测高、测距),一般有以下步骤:审题 构建图形 利用相似解决问题,3,1.小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米已知小华的身高为1.6米,那么他所住楼房的高度为 米,2.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆小丽站在离南岸边15米的点处
6、看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米,WXQ,例已知左右并排的两棵大树高分别是AB=8cm,CD=12cm,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点,例5:已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?,K,盲区,观察者看不到的区 域。,仰角,:
7、视线在水平 线以上的夹角。,水平线,视线,视点,观察者眼睛的位置。,(1),F,B,C,D,H,G,l,A,K,(1),F,B,C,D,H,G,l,A,K,分析:,假设观察者从左向右走到点E时,他的眼睛的位置点F与两颗树的顶端点A、C恰在一条直线上,如果观察者继续前进,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它。,E,由题意可知,ABL,CDL,ABCD,AFH CFK,=,即,=,解得FH=8,当他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,就不能看见右边较高的树的顶端点C,WXQ,1.如图,ABC是一块锐角三角形余料,边BC=
8、120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?,N,M,Q,P,E,D,C,B,A,解:设正方形PQMN是符合要求的ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PNBC,所以APN ABC所以,WXQ,2.如图,要在底边BC=160cm,高AD=120cm,的ABC铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M,此时。,(3)以面积最大的矩形EFGH为侧面,围成一个圆柱形的铁桶,怎样围时,才能使铁桶的体积最大?请说明理由(注:围铁
9、桶侧面时,接缝无重叠,底面另用材料配备)。,(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;,(2)当x为何值时,矩形EFGH的面积S最大;,WXQ,例6.如图所示,一段街道的两边缘所在直线分别为AB,PC,并且AB PC建筑物DE的一端所在MNAB的直线于点N,交PC于点N小亮从胜利街的A处,沿AB着方向前进,小明一直站在P点的位置等候小亮,(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);,(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的C点到胜利街口的距离CM,WXQ,练习,1.为了测量一池塘的宽AB,在岸边找到了一
10、点C,使ACAB,在AC上找到一点D,在BC上找到一点E,使DEAC,测出AD=35m,DC=35m,DE=30m,那么你能算出池塘的宽AB吗?,WXQ,2、如图,已知零件的外径a为25cm,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。,O,(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。),3.如图:小明想测量一颗大树AB的高度,发现树的影子恰好落在土坡的坡面CD和地面CB上,测得CD=4m,BC=10m,CD
11、与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?,4.教学楼旁边有一棵树,数学兴趣小组的同学们想利用树影测量树高。课外活动时在阳光下他们测得一根长为1米的竹竿的影长是0.9米,但当他们马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上。他们测得落在地面的影长2.7米,落在墙壁上的影长1.2米,请你和他们一起算一下,树高多少米?,图11,5.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB),再把竹竿竖立在地面上,测得竹竿的影长(BC)为1.8米,求路灯离地面的高度.,6、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF3m,沿BD方向到达点F处再测得自己得影长FG4m,如果小明得身高为1.6m,求路灯杆AB的高度。,A,WXQ,7.如图,两根电线杆相距20 m,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.,WXQ,再见,