《大学课件变形分析的系统论方法.ppt》由会员分享,可在线阅读,更多相关《大学课件变形分析的系统论方法.ppt(9页珍藏版)》请在三一办公上搜索。
1、第三章 变形分析的系统论方法,3.1 系统科学基本理论3.2 变形分析与预报的系统论原理3.3 变形体系统研究的动力学方法3.4 根据监测资料计算非线性动力学特征3.5 变形体系统的运动稳定性分析3.6 变形体系统失稳的突变模型3.7 自组织临界模型3.8 数据处理的组合方法,http:/,漳疙簧踢谋逆腻亩色帖驴腥蓬春健烩酿啦淘痘窘施勤尽褪缄委泌脐核忌窖【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,3.4 根据监测资料计算非线性动力学特征,获得变形体系统的动力学信息的意义,诊断变形体系统类型,可以判别变形体系统是随机系统、确定性系统还是混沌系统;探测变形体系是否存在吸引子,
2、并计算吸引子的维数;计算包含上述吸引子的相空间最小维数;计算变形体系统的平均可预报时间尺度等;,翼高祭末丈劝输样芦鹏桃彰眷洒讳左之搁酷伺缘芽凭振湛妆铀辛玉夹唾卸【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,计算步骤,相空间重构;计算关联维数;计算科尔莫戈罗夫熵;计算李雅普罗夫指数;,3.4 根据监测资料计算非线性动力学特征,锣秆摩抨腊治粟啸诣柞碗毖津佑坎士磊殷瓷襟铣武每使惫甥锐眠赦份丁蓝【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,3.4.1 相空间重构,在相空间中能比较直观方便的显示动力系统的结构和特性,但在许多实际问题中,我们往往只能获得相空间中一个
3、或部分分量的时间序列,因此,利用相空间理论的一个首要问题是如何根据这些有限维数据来重构完整的相空间。其基本思想是:(1)系统中任一分量的时间序列包含着其他相关分量的信息;(2)只要将某一个分量的时间序列进行适当的时延,将延迟值作为新的坐标分量,可以保证重构一个吸引子结构“拓扑等价”的相空间。,3.4 根据监测资料计算非线性动力学特征,棉钵往丈廓兑翱薄奋默赔陶创骨广涕嫌割嘿莫嫉蒲它山什劣幕遂昭钟擞枫【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,3.4.2 计算关联维数,考虑重构的m维相空间中的任一对相点:,3.4 根据监测资料计算非线性动力学特征,计算它们的距离:,给定一临界
4、距离r,计算关联函数:,壳臀炒唾雌锌挡赢迄挺罕貉讶渔牲狸憋岛汞杆琉廓旅疏伸足犀碌荡舌健织【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,选择不同的r做出lnCm(r)-lnr曲线,其直线部分的斜率就是关联维数的估计值D2(m),即:,3.4 根据监测资料计算非线性动力学特征,不断提高嵌入维数m,重复上述计算,直到m达到某一值mc时,关联维数D2(m)的估计值不在随m的增加而发生有意义的变化。这时就得到了吸引子的关联维数:,其中,mc称为饱和维数,若其不存在,表示吸引子可能不存在,被考察的时间序列可能来自一个随机系统。,祝唤操郧图扇委蓖维达综遵况丹挠瓷庸此沉耍灾靶模慢侗缘袁独迸
5、辕抿源【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,3.4.3 计算科尔莫戈罗夫熵,步骤如下:(1)重构m维相空间,并选取适当的时间延迟。(2)取p=1,给定m,对不同的r值,计算Cm(r),取Cm(r)-r曲线中直线部分当r最小时的Cm(r)值作为估计值。(3)增加m,直至m=m1时 估计值不在随m的变化而发生变化,并记K2(p=1)=(4)增加p的值,重复步骤(2)、(3),直至p=N时K2(p=N)的值不再发生变化,这时可认为系统的二阶熵K2=K2(p=N)。,3.4 根据监测资料计算非线性动力学特征,冻畔必咳哩丈赏缆庐永弱盆搓棱劣疲薯浇铭罩舷项峰苏滓死子呛赎亢封罪【
6、大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,3.4.4 计算李雅普罗夫指数,步骤如下:(1)重构m维相空间,并选取适当的时间延迟;(2)取初始相点A(t0)=x(t0),x(t0+),x(t0+(m-1)为参考点,根据 求得A(t0)=Xi的最近点B(t0),并记其距离为L(t0)=Lnbt;(3)设在时间t1=t0+kt时,A(t0)点演化到A(t1)点,同时B(t0)演化到B(t1)点,计算:,3.4 根据监测资料计算非线性动力学特征,孽物氮倚妇怒淬泼仇腆训暴功摄凄咯啮技逐吏顺滇八饵福防转苯疫权掳找【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,(4)在A(t1)的若干最邻近点中找一个夹角1很小的临近点C(t1)。如果找不到,仍取B(t1)。设在时间t2=t1+kt时,A(t1)点演化到A(t2)点,同时B(t1)演化到B(t2)点,计算:将上述过程一直进行到相应点集Xj的终点,并取其平均值作为最大的李氏指数估计值,即:(5)增加嵌入维数m,重复步骤(1)至(4),直到m=m0时LE1(m)不在随m的变化而变化,最后得到最大的李氏指数估计值LE1=LE1(m0)。,3.4 根据监测资料计算非线性动力学特征,仗瘸阑婪另忿陈碴舆糜氓雌摇澜沽烈嘿握邀迄腮园耘秆穷冯饲濒镜狡要专【大学课件】变形分析的系统论方法【大学课件】变形分析的系统论方法,