波导缝隙阵仿真设计设计.doc

上传人:sccc 文档编号:4834582 上传时间:2023-05-18 格式:DOC 页数:34 大小:1.95MB
返回 下载 相关 举报
波导缝隙阵仿真设计设计.doc_第1页
第1页 / 共34页
波导缝隙阵仿真设计设计.doc_第2页
第2页 / 共34页
波导缝隙阵仿真设计设计.doc_第3页
第3页 / 共34页
波导缝隙阵仿真设计设计.doc_第4页
第4页 / 共34页
波导缝隙阵仿真设计设计.doc_第5页
第5页 / 共34页
点击查看更多>>
资源描述

《波导缝隙阵仿真设计设计.doc》由会员分享,可在线阅读,更多相关《波导缝隙阵仿真设计设计.doc(34页珍藏版)》请在三一办公上搜索。

1、 学校代码:_ 11059_ 学 号:0905072010Hefei University 毕业论文(设计)BACHELOR DISSERTATION论文题目:_波导缝隙阵仿真设计_ _学位类别: 工学学士 学科专业:_ 通信工程 作者姓名:_ 马 跃_ _导师姓名: 郑 娟 完成时间:_ 2013-5-27_ _波导缝隙阵仿真设计中文摘要缝隙天线是由金属面上的缝隙构成的天线。波导裂缝阵列天线由于其体积小、重量轻、口径效率高、功率容量大和容易实现低副瓣及超低副瓣等优点,在机载火控雷达、导弹导引头等方面有着极为广泛的应用。波导上的缝隙随着其切割位置的不同构成了不同形式的缝隙。经常使用的缝隙有开在

2、波导窄边的倾斜缝隙,开在波导宽边的纵向缝隙、横向缝隙以及开在波导宽边中心线上到倾斜缝隙,它们既可以是谐振式的,也可以是非谐振式的。由于这些缝隙均切割表面电流,因而将向外部空间辐射能量,对这些缝隙的个数、位置、尺寸、排列进行精心选择,就能产生各种实用的天线。本次设计要求为天线中心频率10GHz。本设计通过理论计算和软件仿真实现相结合最终得出结果,最后结果从方向图可以看出该缝隙的增益达到19.05dB,且呈现笔形波束。而第一副瓣约为-9.5dB,与主瓣相差28.55dB左右,满足波导缝隙阵天线使用场合的低副瓣要求。关键词:波导缝隙阵;阻抗;导纳;散射系数;HFSS;泰勒线源Design of Wa

3、veguide Slot Array SimulationABSTRACT The slot antenna is the antenna consists of metal surface of the gap. Waveguide slot array antenna because of its small size, light weight, high aperture efficiency,large power capacity and easy to realize low sidelobe and ultra low sidelobe and other advantages

4、, has been widely used in airborne fire control radar, missile seeker. Slot waveguide with the cutting position of different form the gap. Gap are often used in the inclined slot waveguide edge, opened in the longitudinal slot waveguide, the transverse slot and open to the inclined slot in the waveg

5、uide center line, they can be resonant, also can be the non resonant. Because of these gaps are cutting surface current, thus to outer space radiation energy, the slot number, location, size, arrangement of carefully selected, can produce a variety of antenna . The design requirements for the antenn

6、a center frequency 10GHz. This design through theoretical calculation and software simulation to achieve the combination of the final results, the final results from the direction of the gap can be seen that gain reaches 19.05dB, and presented a pencil beam. And the first sidelobe is about -9.5dB, a

7、nd the main valve is about28.55dB, meet the waveguide slot array antenna used low sidelobe requirements. KEY WORD: waveguide slot array; impedance; admittance; scattering coefficient; HFSS; Taylor line source目 录第一章 前言11.1 波导缝隙阵天线研究背景及意义11.2 波导缝隙阵研究的现状2第二章 波导缝隙阵天线概述42.1 天线简介42.2 波导缝隙阵概述52.3 波导裂缝阵天线的组

8、成52.3.1辐射阵面52.3.2耦合波导62.3.3馈电波导62.4 缝隙类型72.4.1 缝隙类型简介72.4.2 宽边纵向半波谐振缝隙82.4.3 宽边横向半波谐振缝隙82.4.4 窄边斜半波谐振缝隙92.5 典型波导缝隙阵天线介绍92.5.1为开在宽壁上的横向谐振缝隙阵92.5.2 纵向谐振缝隙阵102.5.3 纵向谐振缝隙阵二102.5.4非谐振式缝隙阵112.5.5 匹配偏斜缝隙阵112.6 缝隙阵列天线参数确定122.6.1波导缝隙尺寸的确定122.6.2 波导尺寸和阵元间距的确定122.6.3泰勒线源近似132.6.4波导缝隙阵长及缝隙数目的确定142.6.5辐射缝隙的电导值的

9、确定152.6.6缝隙偏移量的确定152.6.7 缝隙匹配的电导条件15第三章 技术实现16 3.1 软件简介163.2 天线的技术实现及大体结构163.2.1 设计原理163.2.2 HFSS软件的仿真实现18第四章 波导缝隙阵的仿真设计过程194.1 仿真过程194.1.1子工程1:给定缝隙偏移,优化缝隙的谐振长度194.1.2子工程2:所有缝隙的完整模型234.2 天线性能27第五章 结论28参考文献29致 谢30II第一章 前言1.1 波导缝隙阵天线研究背景及意义 缝隙天线是由金属面上的缝隙构成的天线。波导缝隙阵天线具有口面场分布容易控制、天线口径效率高、性能稳定结构简单紧凑、强度高、

10、安装方便等特点,而且容易实现窄波束、低副瓣乃至超低副瓣。最近十几年,随着导弹、火箭、飞机等各种高速飞行器的发展,飞行器天线的研究受到了前所未有的重视,同时也对天线系统提出了更高的要求。矩形波导缝隙阵天线在这些需要窄波束或赋性波束的微波通信和雷达系统中获得了广泛应用。特别是它具有体积小、重量轻、口径效率高、宽角副瓣低等特点,因此成为了一种重要韵天线形式,在机载预警雷达、机载气象雷达、导弹导引头雷达以及各种成像雷达中得到了广泛的应用。图1为E3A“望楼”预警机采用的威斯丁豪斯公司研制的AN/APY-1型S波段脉冲多普勒雷达,平板缝隙阵式天线装在转速6转/分的天线罩内,可根据不同作战条件把360度方

11、位圆分成32个扇区,选用不同的工作模态和抗干扰措施1。图 1 E3A“望楼”预警机及采用的AN/APY-1型S波段脉冲多普勒雷达 图 2 单根及平板波导缝隙天线波导上的缝隙随着其切割位置的不同构成了不同形式的缝隙,上图2为几种单根及平板波导缝隙天线。经常使用的缝隙有开在波导窄边的倾斜缝隙,开在波导宽边的纵向缝隙、横向缝隙以及开在波导宽边中心线上到倾斜缝隙,它们既可以是谐振式的,也可以是非谐振式的。由于这些缝隙均切割表面电流,因而将向外部空间辐射能量,对这些缝隙的个数、位置、尺寸、排列进行精心选择,就能产生各种实用的天线方向图。低副瓣要求的波导裂缝阵列天线的设计有着相当高的难度。由于计算机技术的

12、发展和天线加工工艺的提高,以及对雷达抗干扰要求的提高和脉冲多普勒雷达技术发展带来的需求刺激,在上个世纪70年代到90年代初期,波导裂缝阵列天线理论研究和工程设计技术得到了较快的发展,有些国家在设计方法和生产工艺方面都达到了相当成熟的阶段。目前国际上也在大力开展机载相控阵雷达的研制工作,但技术尚未成熟,并且考虑到相控阵天线成本较高,大角度扫描状态下很难实现低副瓣性能等实际困难,可以预见在今后相当长的时问内,裂缝阵列天线仍将是飞行器雷达天线的首选。同时随着各种计算机辅助技术的发展如数控机床的使用,天线的整体焊接技术等,为波导缝隙天线的使用也创造了有利的条件。1.2 波导缝隙阵研究的现状低副瓣波导平

13、板裂缝天线设计中存在的技术问题多年来一直是微波天线领域中研究的热点。国外在40年代末期就开始了波导裂缝天线的研究,首先开展了对波导裂缝的研究和设计波导裂缝天线的尝试工作。1948年利用波导的等效传输线理论及波导格林函数,取缝隙长度为/2(为工作波长),导出了各种形式缝隙的归一化电阻(电导)的计算式。随后利用变分公式,考虑了波导壁厚的影响,计算了缝隙的阻抗(导纳)特性。在70年代到90年代初期的二十多年里,计算机技术得到了极大的发展。计算机提供的计算速度和存储容量使得很多复杂的电磁场问题可以计算出精确的结果,这也使得平板裂缝天线理论研究和工程设计技术得到了蓬勃发展。后来又采用矩量法对波导宽边纵向

14、辐射裂缝进行了分析。采用的方法是,在裂缝的上、下口径上运用磁场连续性条件得到两个积分方程,将厚度为t的裂缝视作一个腔体,分别建立波导、半自由空间、裂缝腔体的格林函数,然后用矩量法计算裂缝口径上电场沿裂缝长度方向的数值。后来在忽略波导内缝隙间互耦和波导壁厚影响的情况下采用等效磁流片的方法导出考虑辐射裂缝间外互耦以及高次模影响的解析表达式,并将辐射裂缝的设计理论归结为三个方程。EUiott等的卓越贡献,使得平板裂缝天线的理论研究和工程设计达到了较为成熟的阶段,他建立的理论为当今波导裂缝阵列天线设计方法的主流2。国内对裂缝阵天线的研究相对来说起步较晚,主要从70年代开始开展研究,一大批科研人员在理论

15、分析计算、设计方法、实验研究、加工工艺等各个方面开展了大量工作,取得了相当的进展,但性能距国际先进水平仍有很大差距。其中对辐射裂缝单元、交叉波导耦合裂缝单元以及耦合裂缝与辐射裂缝的相互影响的研究较多,吕善伟等采用矩量法对辐射裂缝、交叉波导耦合裂型以及耦合裂缝与相邻辐射裂缝的影响进行了大量的理论分析计算;彭仲秋对交叉波导耦合裂缝馈电的辐射纵缝中的场分布进行了分析;李浚沛等采用矩量法对辐射裂缝、短路板对辐射裂缝的影响、耦合裂缝阻抗特性等都进行了理论研究和计算;任武等使用时域有限差分法对矩形波导上单个辐射缝隙的特性进行了严格分析,并对谐振状态的定义做了讨论;自80年代初开始,西北工业大学万伟、王汉阳

16、、万国宾、陈莽等对波导裂缝天线进行了一系列研究,王汉阳对正交波导宽边公共壁上任意倾角、长度和厚度的缝隙的耦合特性做了理论分析,万国宾建立了波导缝隙天线阵的CAD/CAS模型,陈莽等对波导缝隙阵列的散射特性进行了理论分析。丁晓磊等采用场分析法并结合矩量法对由耦合纵缝馈电的两端短路波导宽边纵缝阵进行了理论分析和综合设计。 第二章 波导缝隙阵天线概述在导体面上切一开口,即缝隙,馈电后形成辐射,称为缝隙天线,也称为开槽天线。它通过导体面上和二导体面之间的缝隙向外辐射,其辐射可看成是由缝隙上的等效场源-磁流元形成的。而波导缝隙天线阵一般由许多开在矩形波导壁上的半波缝隙组成,主要优点是口径分布便于控制,易

17、于实现地旁瓣电平,效率高,结构紧凑,加工与安装简便。2.1 天线简介天线电系统中发射或接收电磁波的设备,称为天线。天线是无线电通信、广播、导航、雷达、测控、微波遥感、射电天文及电子对抗等各种无线电系统必不可少的设备之一。我们几乎天天都看到天线和使用天线,如移动基站塔上的通信天线、全球定位系统(GPS)接收天线和大家手机内的天线,等等。天线种类繁多,大小不一,千姿百态,尽管它们之间的差异很大,但都是基于相同的辐射与接收机理,都是以电磁场理论为基础进行分析与设计的。正因为如此我才要先大体简单的介绍下天线。天线的主要功能首先是能量转换:将发射机经传输线的射频导波能量变换成无线电波能量向空间辐射(发射

18、天线),或反之(接收天线)。所以天线是导行电磁波与空间电磁波之间的转换器3。另一主要功能是:能量的发射与接收具有方向性,即,天线具有对能量进行空间分配的功能。例如,卫星地面站天线能将辐射能量集束成一个很窄的主波束,并将它指向卫星,其作用就如同探照灯的聚光作用一样。第三个功能是:辐射或接收指定的极化波,即天线能形成所需的极化。例如,在卫星广播中为实现频谱复用,往往要求卫星有双极化能力。为能满足这些天线的功能,对其提出了一系列具体的要求。表达这些要求的电指标称为天线的电参数,如辐射效率、波束宽度、方向系数、增益、输入阻抗、极化和频带宽度等,在一些无线电系统中,天线的电参数直接决定其整个系统的性能指

19、标。随着人们的需求,导致了形形色色、性能万千的天线结构的应用,本次设计主要研究为波导缝隙阵天线4。2.2 波导缝隙阵概述在导体面上切一开口,即缝隙,馈电后形成辐射,称为缝隙天线,也称为开槽天线。它通过导体面上和二导体面之间的缝隙向外辐射,其辐射可看成是由缝隙上的等效场源-磁流元形成的。波导缝隙天线阵一般由许多开在矩形波导壁上的半波缝隙组成【5。 波导缝隙构成的天线阵列主要有两种形式,即波导宽边开缝而构成的缝隙天线阵和波导窄边开缝而构成的缝隙天线阵。前者不但电气性能优良,而且还有厚度小,功率容量大等特点,且缝间互祸较小,没有交叉极化分量,在机载火控雷达、导弹等方面起到非常重要的作用。根据裂缝单元

20、间距和馈电方式的选择,宽边缝隙阵又可分为两种:一种是由行波激励的非谐振缝隙阵,一种是由驻波激励的谐振缝隙阵。在工作频段范围内相邻缝隙之间的距离稍大于或稍小于g/2(g是波导中的波长)的称为非谐振缝隙阵。相邻的缝隙之间的距离等于g/2的称为谐振缝隙阵。波导的终端决定了阵的形式,非谐振缝隙阵沿波导传输到终端负载,建立起沿波导轴向的行波分布。行波电流通过缝隙时将激励缝隙,因此缝隙能放在相对于波导负载的任何位置上,缝隙间的距离和传播常数决定了它们的相对相位。谐振缝隙阵中的电磁波沿波导传输到短路板处,建立起沿波导轴向的驻波分布,并产生驻定的正弦电流幅度分布,其相位沿波导轴向线性变化。处于驻波电流零点的缝

21、隙不会切断电流,也就不会被波导激励。因此可以改变缝隙在波导上的位置来改变对缝隙的激励幅度。需要指出的是,不论是哪种形式的阵列,缝隙都工作在谐振状态6。2.3 波导裂缝阵天线的组成 波导裂缝阵由若干条辐射阵面、一条交叉放置的耦合波导、一个为耦合波导馈电的馈电波导共3个部分组成。馈电波导将能量耦合到耦合波导之中,耦合波导通过祸合裂缝将能量按要求耦合到辐射波导,辐射波导中的辐射裂缝再将能量按口径分布的幅度、相位要求辐射出去。裂缝的设计要满足天线口径上场的分布,同时,使每个子阵的馈电口阻抗匹配7。2.3.1辐射阵面 辐射阵面由一系列开有宽边偏置并联裂缝的谐振阵波导构成,每一个裂缝切割波导壁上的面电流产

22、生裂缝的电磁场,并向外空间辐射电磁波。根据要求的天线口径场分布得到各个裂缝的归一化导纳值。通过控制裂缝的长度、偏移来调整每个裂缝的归一化导纳值,从而得到所要求的天线性能。辐射波导一般采用谐振阵,即两相邻裂缝相距g/2,最末一个裂缝到短路板的间距为g/4。各裂缝交替地向波导中心线左右两边偏置,使裂缝相位改变为180度,以弥补波导内驻波在相邻的缝之间的180度相移。 在实际工程设计中将会遇到以下问题:(1)由于辐射阵面波导上最末端的裂缝到短路板的距离为g/4,而天线的口径面尺寸限定致使这一关系无法满足,如果减少阵面裂缝的数目将会影响天线的副瓣电平。为此,常在波导末端填充大介电常数介质以减小波导波长

23、g从而满足尺寸要求。(2)在结构设计方面为保证焊接时裂缝的位置不发生偏移,应在适当的位置加上定位构件。同时也要考虑填充介质与金属在焊接时的固定。2.3.2耦合波导 耦合波导是开有宽边倾斜串联裂缝的谐振阵波导构成。耦合波导装在辐射阵面的后面,并与辐射阵面正交,耦合波导激励各个倾斜串联裂缝,每个倾斜串联裂缝的倾斜角决定了该裂缝的等效阻抗,从而确定每个辐射波导内的功率电平。耦合波导一般采用谐振阵,即两相邻裂缝相距g / 2最末一个裂缝到短路板的间距为g/2。各裂缝交替地向相反的方向倾斜使裂缝相位改变180度,以弥补波导内驻波在相邻缝之间的180度相移。 在实际工程设计中将会遇到以下问题: 与辐射波导

24、相类似,波导最末一个裂缝到短路板之间的距离不可能刚好满足g/2的关系,为此需设法延长波导的长度,此时可采用将波导向上折起的办法来增加波导长度。2.3.3馈电波导 馈电波导是耦合波导和馈电网络的连接部分,在该部分要充分考虑到阻抗匹配的问题。在实际设计中是在波导中加入销钉和膜片,以及设置合理的波导短路块调节装置来达到阻抗匹配的。馈电波导内电磁波的相位关系与它上面裂缝的倾斜方向有着密切的联系,可以利用这一因素设计合理的网络,从而达到简化天线结构的目的。 总之,波导裂缝阵列天线的各个部分是一个有机的整体,每一部分设计的不合理都会导致整机性能的下降。而每个部分都有各自的设计难点。2.4 缝隙类型2.4.

25、1 缝隙类型简介最基本的缝隙天线是由开在矩形波导壁上的半波谐振缝隙构成的。由电磁场理论,对TE10波而言,在波导宽壁上有纵向和横向两个电流分量,横向分量的大小沿宽边呈余弦分布,中心处为零,纵向电流沿宽边呈正弦分布,中心处最大;而波导窄壁上只有横向电流,且沿窄边均匀分布8。图3波导缝隙形式及面电流分布情况如果波导壁上所开的缝隙能切割电流线,则中断的电流线将以位移电流的形式延续,缝隙因此得到激励,波导内的传输功率通过缝隙向外辐射,这样的缝隙也就被称为辐射缝隙。当缝隙与电流线平行时,不能在缝隙区内建立激励电场,这样的缝隙因得不到激励,不具有辐射能力,因而被称为非辐射缝隙。 缝隙g虽然与纵向电流平行,

26、但是其旁边设置了电抗振子h,电抗振子是插入波导内部的螺钉式金属杆,由于该螺钉平行于波导内部的电场,因此被感应出的传导电流流向螺钉底部处的波导内壁而形成径向电流,于是纵缝g可以切断其中的一部分而得到激励9。 图3波导缝隙形式及面电流分布情况下图4为波导缝隙的等效电路图10 图4波导缝隙阵的等效电路图史蒂文森已导出各种形式缝隙的归一化电导或电阻的计算公式。其特点是利用互易定理求出缝隙的前向和后向散射场,再利用波导中的功率平衡方程求出其等效电导或电阻。下面简单举例介绍三种波导缝隙的归一化等效电导或电阻2.4.2 宽边纵向半波谐振缝隙(图5)谐振缝隙如果波导缝隙采用了谐振长度,它们的输入电抗或输入电纳

27、为零,即等效串联阻抗或并联导纳中只含有实部,不含有虚部。图 5 宽边纵向半波谐振缝隙等效电路图其归一化电导为 (2-1) 2.4.3 宽边波谐振缝隙(图6)图 6 宽边横向半波谐振缝隙其归一化电阻为 (2-2) 2.4.4 窄边斜半波谐振缝隙(图7)图 7 窄边斜半波谐振缝隙其归一化电导为 (2-3) 有了相应的等效电路,波导内的传输特性就可以依赖于微波网络理论来分析,例如后向散射系数|s11|及频率响应曲线,从而更方便地计算矩形波导缝隙天线的电特性,例如传输效率及匹配情况。 在已获得匹配的波导上开出辐射缝隙,将会破坏波导的匹配情况。为了使带有缝隙的波导匹配,可以在波导的末端短路,利用短路传输

28、线的反射消去谐振缝隙带来的反射,使得缝隙波导得到匹配。 2.5 典型波导缝隙阵天线介绍波导缝隙天线阵一般由许多开在矩形波导壁上的半波缝隙组成。下面介绍几种常见缝隙阵:2.5.1为开在宽壁上的横向谐振缝隙阵(图8)为保证各缝隙同相,相邻缝隙的间距应取为g。由于波导波长g大于自由空间波长,这种缝隙阵会出现栅瓣,同时在有限长度的波导壁上开出的缝隙数目受到限制,增益较低,因此实际中较少采用。图 8 开在宽壁上的横向谐振缝隙阵2.5.2 纵向谐振缝隙阵(图9)利用了在宽壁中心线两侧对称位置处横向电流反相、沿波导每隔g/2场强反相的特点,纵缝每隔g/2交替地分布在中心线两侧即可得到同相激励。图 9 纵向谐

29、振缝隙阵一2.5.3 纵向谐振缝隙阵二(图10)图中对应的螺钉需要交替地分布在中心线两侧。图 10 纵向谐振缝隙阵二2.5.4非谐振式缝隙阵根据均匀直线阵的分析,非谐振缝隙天线阵的最大辐射方向偏离阵法线的角度为 (2-4)非谐振缝隙天线适用于频率扫描天线,因为与频率有关,波束指向max可以随之变化。非谐振式天线的优点是频带较宽,缺点是效率较低。 2.5.5 匹配偏斜缝隙阵(图11)如果谐振式缝隙天线阵中的缝隙都是匹配缝隙,即不在波导中产生反射,波导终端接匹配负载,就构成了匹配偏斜缝隙天线阵。 图 11 匹配偏斜缝隙阵2.6 缝隙阵列天线参数确定2.6.1波导缝隙尺寸的确定11缝隙宽度的确定是根

30、据绝缘强度来确定的。假定由天线所辐射的功率在各个缝隙上是均匀分配的,则缝隙上的最大电压值为 (2-5) 式中,为任一缝隙的导纳,n为缝隙的数目,p为天线的辐射功率。缝隙应具有的宽度为: (2-6)Enp为发生击穿时的匀强场的场强。波导缝隙的宽度的确定可根据在缝隙阵设计基础中所提到的设计尺寸,同时在工程上,一般功率不是很大的情况下,我们一般可以近似的认为,缝隙宽度满足下面要求就可以了 (2-7)实际中,缝隙宽度根据波导型号选择适当值即可。根据波导缝隙阵列的设计理论,缝隙的偏移量对缝隙的谐振长度存在较大的影响,目前在理论上还没有十分明确的理论公式对这一影响进行分析,通常是采用实际工程中的经验值作为

31、缝隙的谐振长度。在根据实际加工测量的结果进行部分的修正,最终得出缝隙的谐振长度,但是传统的设计方法,需要比较长的设计、加工和测试 周期,不但使成本较高,而且非常费时、费力。我们在对传统的分析方法进行了分析的基础上,应用HFSS软件的优化功能得到在不同偏置条件下的缝隙谐振长度。工程中缝隙几何长度大多数谐振于1/2左右。一般取Length=0.48,在谐振时,缝隙的等效阻抗或导纳为实数。2.6.2 波导尺寸和阵元间距的确定根据天线设计的指标要求,使天线的主波束指向负载端方向。图12实际阵列结构图与天线主波束指向图非谐振式缝隙波导阵中,缝隙的间距的d的选择,应能使主瓣的指向在包含阵轴的平面内几乎可以

32、是任意角度,该角是以阵的法线算起的角度,如上图12所示。从而经分析得到 (2-8) (2-9)可以看出,d的确定和波导宽边长度a与指向角有关。同时为了保证上式中sin必须满足以下条件: (2-10)则对d进行了进一步的限制(分两种情况),当缝隙位于波导中心的两边(即缝隙交替偏移出现)。 (2-11)2.6.3泰勒线源近似由主瓣与副瓣电平之比R0可以确定参数A (2-12)主瓣一侧的等副瓣数目取为,称为展宽因子,由下式确定: (2-13)泰勒阵列各单元的激励幅度为 (2-14)式中 (2-15) (2-16)最后对激励幅度进行归一。2.6.4波导缝隙阵长及缝隙数目的确定由波瓣宽度及增益要求确定缝

33、隙阵的长度: (2-17)式中:为半功率波瓣宽度,为主波束倾角,B为波束展宽因子,为泰勒线源展宽因子。已知缝隙间距即可得缝隙总数: (2-18)2.6.5辐射缝隙的电导值的确定12谐振式波导缝隙阵,波导的一端用匹配负载端接,缝隙是谐振的,略去波导的传输衰减,而且波导整个长度上是匹配的。在这种条件下,可由下列关系式求得电导:式中P(p)为缝隙单位长度所辐射的功率,它与该处的场分布幅度平方成正比,为波导的输入功率,p为辐射缝隙中点的坐标。假设天线输入功率为1,终端吸收负载吸收的功率为r,则根据关系式 (2-19)可得到每个缝隙的电导值。2.6.6缝隙偏移量的确定当各个缝隙的电导值确定,那么根据波导

34、纵向缝隙阵列天线的设计中,宽边纵向谐振缝隙的归一化等效电导的表达式,即可求出各个缝隙偏移波导宽边中心线距离X: (2-20)可得: (2-21)2.6.7 缝隙匹配的电导条件13波导纵向缝隙阵列天线的设计中,宽边纵向谐振缝隙的归一化等效电导如前所述(式2-20),为了使缝隙和波导达到良好的匹配从而降低天线的驻波比,缝隙单元的电导必须满足下面的条件(缝隙一端为短路板,一端为馈电端口): (2-22)第三章 技术实现3.1 软件简介本设计主要利用HFSS对波导缝隙阵进行仿真设计的,所以先简单介绍下本款软件。HFSS是利用我们熟悉的Windows图形用户界面的一款高性能的全波电磁场(EM)段任意3D

35、无源器件的模仿仿真软件。易于学习,有仿真,可视化,立体建模,自动控制的功能,使3DEM问题能快速准确的求解。Ansoft HFSS使用有限元法(FEM),自适应网格划分和高性能的图形界面,能让你在研究所有三维EM得心应手。Ansoft HFss能用于诸如S-参数,谐振频率和场等的参数计算。HFSS是基于四面体网格元的交互式仿真系统。这使你能解决任意的3D几何问题,尤其是那些有复杂曲线和曲面的问题,当然在局部会利用其他技术。所以本仿真设计选择HFSS软件实现。3.2 天线的技术实现及大体结构3.2.1 设计原理本次设计考虑宽边纵向谐振式驻波阵列,每个缝隙相距0.5,距离波导宽边中心有一定偏移。宽

36、边上纵向并联缝隙的电导为 (3-1)式中,X为待求的偏移量;a为波导内壁宽边长度;为波导波长。在具体的设计中可以利用HFSS的优化功能确定缝隙的谐振长度(图13)。首先确定在谐振缝隙设计中存在的几个变量,主要有:缝隙偏移波导中心线的距离Offset,缝隙的长度L,缝隙的宽度W等。一般可根据实际的加工确定出W缝隙的宽度,应用HFSS的优化功能得出Offset和Length。在波端口的Y矩阵参数可以等效于距检测端口的二分之一个波导波长的缝隙中心的Y矩阵参数,根据波导缝隙的基本设计理论,在谐振时缝隙的等效阻抗或导纳为实数。因此当缝隙谐振时有Im(Y)=0。 图13单缝谐振长度优化示意图表1各个缝隙的

37、电平分布 n 1 2 3 4 5 6 7 8 9 10 0.33 0.29 0.39 0.5 0.62 0.73 0.83 0.91 0.97 1.0设计一个有20个缝隙组成的缝隙阵,采用Chebyshev电流分布,前10个缝的电平分布由表1给出。根据电平分布进行归一化 (3-2)可以得到K=0.100598。由下式可以得到各个缝隙的导纳值: (3-3)各个缝隙的导纳如下:g1=0.100598, g2=0.09465 g3=0.0833, g4=0.0693 g5=0.0536, g6=0.03867 g7=0.0265, g8=0.0153 g9=0.00846, g10=0.010955

38、选用WR-9型波导,其波导尺寸为:a=22.86mm,窄边b=10.16mm。工作频率为10GHz,工作波长=30mm,波导波长为=39.75mm。根据波导各个尺寸可得偏移量与导纳之间的关系为 (3-4) 由上式导纳值可以求得各个缝隙的偏移量 X1=2.5097mm, x2=2.4314mmX3=2.2757mm, x4=2.0698mmX5=1.8146mm, x6=1.5368mmX7=1.2691mm, x8=0.9623mmX9=0.7146mm, x10=0.8136mm3.2.2 HFSS软件的仿真实现本设计利用HFSS软件设计波导缝隙阵天线,整个设计过程可以分为两个子工程,子工程

39、1在给定缝隙的偏移量下优化缝隙的谐振长度,可以利用该工程对各个缝进行优化。子工程2建立含有所有缝隙的完整模型。天线中心频率10GHz。选用WR-90型波导,其具体指标为:宽边22.86mm,窄边10.16mm,波导波长39.75mm。本设计中先介绍了如何在HFSS中实现对单个缝隙和馈电结构的建模,然后介绍其激励端口和边界的设置以及在给定偏移量的情况下如何优化天线的缝隙的谐振长度,而后建立了包含所有缝隙的完整阵列模型。最后生成二维和三维方向图的仿真结果。第四章 波导缝隙阵的仿真设计过程4.1 仿真过程4.1.1子工程1:给定缝隙偏移,优化缝隙的谐振长度1、建立缝隙天线模型 (1) 建立波导Wav

40、eguide(图14)。图14建立的Waveguide(2) 建立缝隙Slot(图15)图15完整的缝隙(3)创建Air(图16)。图16 Air空气盒 (4) 设置边界条件(5) 设置端口激励(6) 设置工程变量(7) 求解设置(8)保存设置(图17)图17整体图1、优化该工程(1) 求解工程(2)缝隙长度优化做如下图18、19设置图18设置优化目标图19添加优化目标(1) 经过计算,在offset=2mm时,谐振长度L=13.69(图20)。图20优化结果4.1.2子工程2:所有缝隙的完整模型利用子工程1可以根据各个缝隙的偏移量优化其谐振长度。为了方便建模,各个缝隙除去倒角的长度均选择为13.6mm。1、建立缝隙天线模型(1)建立波导Waveguide(图21)图21 Waveguide(2)建立缝隙阵(图22)图22缝隙阵的完整模型(3)创建Air(4)设置边界条件设置air为辐射边界,在各个缝隙的上表面设置Perfect H边界,注意设置两边界的顺序,先设置辐射边界,后设置Perfect H边界。(5) 求解设置(6)保存工程(图23)图23完整的工程2、 分析该工程(1) 求解该工程(2)后处理计算(3)3D增益方向图(图24)。 图24 3D增益方向图(4)2D增益方向图(图25)。 图 25 2D增益

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号