概述20世纪中期大量采用一些经典的分离方法沉淀.ppt

上传人:sccc 文档编号:4881185 上传时间:2023-05-21 格式:PPT 页数:55 大小:2.37MB
返回 下载 相关 举报
概述20世纪中期大量采用一些经典的分离方法沉淀.ppt_第1页
第1页 / 共55页
概述20世纪中期大量采用一些经典的分离方法沉淀.ppt_第2页
第2页 / 共55页
概述20世纪中期大量采用一些经典的分离方法沉淀.ppt_第3页
第3页 / 共55页
概述20世纪中期大量采用一些经典的分离方法沉淀.ppt_第4页
第4页 / 共55页
概述20世纪中期大量采用一些经典的分离方法沉淀.ppt_第5页
第5页 / 共55页
点击查看更多>>
资源描述

《概述20世纪中期大量采用一些经典的分离方法沉淀.ppt》由会员分享,可在线阅读,更多相关《概述20世纪中期大量采用一些经典的分离方法沉淀.ppt(55页珍藏版)》请在三一办公上搜索。

1、1,11.1概述20 世纪中期,大量采用一些经典的分离方法:沉淀、蒸馏和萃取 现代分析中,大量采用色谱和电泳分离方法。迄今为止,色谱方法是最为有效的分离手段!其应用涉及每个科学领域。11.1.1 历史:1903年,俄国植物学家Mikhail Tswett 最先发明。他采用填充有固 体CaCO3细粒子的玻璃柱,将植物色素的混合物(叶绿素和叶黄素加于柱顶端,然后以溶剂淋洗,被分离的组份在柱中显示了不同的色带,他称之为色谱(希腊语中“chroma”=color;“graphein”=write)。50年代,色谱发展最快(一些新型色谱技术的发展;复杂组分分析发展的要求。1937-1972年,15年中有

2、12个Nobel奖是有关色谱研究的!,第十一章 气相色谱法,2,11.1.2 概念,固定相;在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)流动相:自上而下运动的一相(一般是气体或液体)色谱柱:装有固定相的管子(玻璃管或不锈钢管)11.1.3 色谱分离基本原理:使用外力使含有样品的流动相(气体、液体或超临界流体)通过一固定于柱或平板上、与流动相互不相溶的固定相表面。样品中各组份在两相中进行不同程度的作用。与固定相作用强的组份随流动相流出的速度慢,反之,与固定相作用弱的组份随流动相流出的速度快。由于流出的速度的差异,使得混合组份最终形成各个单组份的“带(band)”或“区(zon

3、e)”,对依次流出的各个单组份物质可分别进行定性、定量分析。,3,分配系数K 分配色谱的分离是基于样品组分在固定相和流动相之间反复多次的分配过程,而吸附色谱的分离是基于反复多次的吸附-脱附过程。这种分离过程经常用样品分子在两相间的分配来描述,而描述这种分配的参数称为分配系数K。它是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值,即 K=溶质在固定相中的浓度/溶质在流动相中的浓度=Cs/Cm,4,混合组分的分离过程及检测器对各组份在不同阶段的响应,5,11.1.4 色谱分类方法:a.按固定相外形分:柱色谱(填充柱、空心柱)、平板色谱(薄层色谱和纸色谱。b.按组份在固定相上

4、的分离机理分:吸附色谱:不同组份在固定相的吸附作用不同;分配色谱:不同组份在固定相上的溶解能力不同;离子交换色谱:不同组份在固定相(离子交换剂)上的亲和力不同;凝胶色谱(尺寸排阻色谱)不同尺寸分子在固定相上的渗透作用。,6,c.按两相状态分,7,11.1.5气相色谱分析流程,气相色谱法用于分离分析样品的基本过程如下图:气相色谱过程示意图 由高压钢瓶1供给的流动相载气。经减压阀2、净化器3、流量调节器4和转子流速计5后,以稳定的压力恒定的流速连续流过气化室6、色谱柱7、检测器8,最后放空。,1,2,3,4,5,6,7,8,8,第二节 气相色谱固定相,在介绍色谱仪器时,我们提到色谱分离系统是色谱仪

5、器中最为灵魂的部分,而其中分离柱中固定相组成与性质更是直接与分离效能有关。气相色谱柱可分为两类:1)用于气固色谱的固定相:固体吸附剂;2)用于气液色谱的固定相:固定液+载体。11.2.1气固色谱固定相固体吸附剂 该类型色谱柱是利用其中固体吸附剂对不同物质的吸附能力差别进行分离。主要用于分离小分子量的永久气体及烃类。1.常用固体吸附剂,9,高分子多孔微球可分为两类:非极性:苯乙烯+二乙烯苯共聚:GDX-1和2型(国产);Chromosorb系列(国外)极性:苯乙烯+二乙烯苯共聚物中引入极性基团:GDX-3和4型(国产);Porapak N等(国外),10,11.2.2、气液色谱固定相载体+固定液

6、 气液色谱固定相由载体(Solid support material)和固定液(Liquid stationary phase)构成:载体为固定液提供大的惰性表面,以承担固定液,使其形成薄而匀的液膜。1.载体(也称担体)对载体的要求:粒度均匀、高强度的球形小颗粒;至少1m2/g的比表面(过大可 造成峰形拖尾);高温下呈惰性(不与待测物反应)并可被固定液 完全浸润。载体类型:分为硅藻土型和非硅藻土型,后者又分为白色和红色担体。,11,载体表面处理:硅藻土含有硅醇基(SiOH)、Al2O3、Fe等,也就是说,它具有活性而不完全化学惰性,需进行化学处理。其处理过程如下:,12,2.固定液及其选择对固

7、定液的要求:a)热稳定性好、蒸汽压低流失少;b)化学稳定性好不与其它物质反应;c)对试样各组分有合适的溶解能力(分配系数K适当);d)对各组分具有良好的选择性。固定液与组分的作用力:a)色散力非极性分子之间(瞬时偶极之间静电吸引);b)诱导力极性与非极性分子之间(偶极与瞬时偶极之间静电吸引);c)取向力极性与极性分子之间(偶极与偶极之间静电吸引)d)氢键力强度介于化学键力和范德华力之间的静电吸引,亦属取向力。前三种统属范德华力,后者属特殊范德华力。,13,3.固定液的选择 固定液的特性是指其极性和选择性。极性的表示方法(i)相对极性P:规定非极性固定液角鲨烷的极性为0,强极性固定液,-氧二丙腈

8、的极性为100,以物质对正丁烷-丁二烯或环已烷-苯在角鲨烷、,-氧二丙腈及待测固定液上分离得到相对保留值,并取对数:从下列公式求得待测固定液的相对极性Px:其中q1,q2,qx分别表示物质对在角鲨烷、,-氧二丙腈和待测固定液的相对保留值。Px在0100之间,每20单位为一级,即将极性分为5级:0,+1(非极性);+1,+2(弱极性);+3(中等极性;+4,+5(强极性)(ii)固定液特性常数I:包括罗氏常数麦氏常数。此处介绍略,14,固定液分类及选择:,固定液选择:按“相似相溶”原理选择固定液。非极性组分非极性固定液沸点低的物质先流出;极性物质极性固定液极性小的物质先流出;各类极性混合物极性固

9、定液极性小的物质先流出;氢键型物质氢键型固定液不易形成氢键的物质先流出;复杂混合物两种或以上混合固定液,15,1基线:在实验条件下,色谱柱后仅有纯流动相进入检测器时的流出曲线称为基线,S/N大的、稳定的基线为水平直线。2峰高:色谱峰顶点与基线的距离。,3保留值(Retention value,R)a.死时间(Dead time,t0):不与固定相作用的物质从进样到出现峰极大值时的时间,它与色谱柱的空隙体积成正比。由于该物质不与固定相作用,因此,其流速与流动相的流速相近。据 t0 可求出流动相平均流速,第三节 气相色谱分析理论基础11.3.1色谱流出曲线和有关术语,16,b.保留时间tr:试样从

10、进样到出现峰极大值时的时间。它包括组份随流动相通过柱子的时间t0和组份在固定相中滞留的时间。c.调整保留时间:某组份的保留时间扣除死时间后的保留时间,它是组份在固定相中的滞留时间。即 由于时间为色谱定性依据。但同一组份的保留时间与流速有关,因此有时需用保留体积来表示保留值。d.死体积V0:色谱柱管内固定相颗粒间空隙、色谱仪管路和连接头间空隙和检测器间隙的总和。勿略后两项可得到:其中,Fco为柱出口的载气流速(mL/min),其值为:F0-检测器出口流速;Tr-室温;Tc-柱温;p0-大气压;pw-室温时水蒸汽压。,17,e.保留体积Vr:指从进样到待测物在柱后出现浓度极大点时所通过的流动相的体

11、积。f.调整保留体积:某组份的保留体积扣除死体积后的体积。g.相对保留值r2,1:组份2的调整保留值与组份1的调整保留值之比。注意:r2,1只与柱温和固定相性质有关,而与柱内径、柱长L、填充情况及流动相流速无关,因此,在色谱分析中,尤其是GC中广泛用于定性的依据!具体做法:固定一个色谱峰为标准s,然后再求其它峰 i 对标准峰的相对保留值,此时以 表示:1,又称选择因子(Selectivity factor)。,18,从色谱流出曲线中,可得许多重要信息:(i)根据色谱峰的个数,可以判断样品中所含组分的最少个数;(ii)根据色谱峰的保留值,可以进行定性分析;(iii)根据色谱峰的面积或峰高,可以进

12、行定量分析;(iv)色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据;(v)色谱峰两峰间的距离,是评价固定相(或流动相)选择是否合适的依据。,19,11.3.2 色谱柱性能,20,一。.塔板理论(Plate theory)1952年,Martin等人提出的塔板理论将一根色谱柱当作一个由许多塔板组成的精馏塔,用塔板概念来描述组分在柱中的分配行为。塔板是从精馏中借用的,是一种半经验理论,但它成功地解释了色谱流出曲线呈正态分布。塔板理论假定:1)塔板之间不连续;2)塔板之间无分子扩散;3)组分在各塔板内两相间的分配瞬间达至平衡,达一次平衡所需柱长为理论 塔板高度H;4)某组分在所有塔板上的分配

13、系数相同;5)流动相以不连续方式加入,即以一个一个的塔板体积加入。当塔板数n较少时,组分在柱内达分配平衡的次数较少,流出曲线呈峰形,但不对称;当塔板数n50时,峰形接近正态分布。,21,根据呈正态分布的色谱流出曲线可以导出计算塔板数n的公式,用以评价一根柱子的柱效。由于色谱柱并无真正的塔板,故塔板数又称理论塔板数:可见理论塔板数由组分保留值和峰宽决定。若柱长为L,则每块理论塔板高度H为 由上述两式知道,理论塔板数n越多、理论塔板高度H越小、色谱峰越窄,则柱效越高。但上述两式包含死时间t0,它与组分在柱内的分配无关,因此不能真正反映色谱柱的柱效。通常以有效塔板数neff 和有效塔板高度Heff

14、表示:,22,有关塔板理论的说明:1)说明柱效时,必须注明该柱效是针对何种物质、固定液种类及其含量、流动相种类及流速、操作条件等;2)应定期对柱效进行评价,以防柱效下降、延长柱寿命。3)塔板理论描述了组分在柱内的分配平衡和分离过程、导出流出曲线的数学模型、解释了流出曲线形状和位置、提出了计算和评价柱效的参数。但该理论是在理想情况下导出的,未考虑分子扩散因素、其它动力学因素对柱内传质的影响。因此它不能解释:峰形为什么会扩张?影响柱效的动力学因素是什么?,23,2.速率理论(Rate theory)1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论:吸收了塔板理论中的板高

15、H概念,考虑了组分在两相间的扩散和传质过程,从而给出了van Deemter方程:u 为流动相线速度;A,B,C为常数,其中 A分别表示涡流扩散系数;B分子扩散系数;C传质阻力系数(包括液相和固相传质阻力系数)。该式从动力学角度很好地解释了影响板高(柱效)的各种因素!任何减少方程右边三项数值的方法,都可降低H,从而提高柱效。,24,1)涡流扩散项(Multipath term,A)在填充柱中,由于受到固定相颗粒的阻碍,组份在迁移过程中随流动相不断改变方向,形成紊乱的“涡流”:从图中可见,因填充物颗粒大小及填充的不均匀性同一组分运行路线长短不同流出时间不同峰形展宽。展宽程度以A表示:A=2dp其

16、中dp填充物平均直径;填充不规则因子。,可见,使用细粒的固定相并填充均匀可减小A,提高柱效。对于空心毛细管柱,无涡流扩散,即A=0。,流动方向,25,2)分子扩散项(Longitudinal diffusion term,B/u)纵向分子扩散是由于浓度梯度引起的。当样品被注入色谱柱时,它呈“塞子”状分布。随着流动相的推进,“塞子”因浓度梯度而向前后自发地扩散,使谱峰展宽。其大小为B=2D 称为弯曲因子,它表示固定相几何形状对自由分子扩散的阻碍情况;D组分在流动相中的扩散系数。组份为气体或液体时,分别以Dg或Dm表示;讨论:分子量大的组分,Dg小,即B小 Dg 随柱温升高而增加,随柱压降低而减小

17、;流动相分子量大,Dg 小,即 B 小;u 增加,组份停留时间短,纵向扩散小;(B/u)对于液相色谱,因Dm 较小,B 项可勿略。,球状颗粒;大分子量流动相;适当增加流速;短柱;低温。,26,3)传质阻力项(Mass-transfer term,Cu)因传质阻力的存在,使分配不能“瞬间”达至平衡,因此产生峰形展宽。气相色谱以气体为流动相,液相色谱以液体为流动相,二者传质过程不完全相同。下面分别作讨论。a)气液色谱:传质阻力项C包括气相传质阻力系数Cs和液相传质阻力系数Cl。,讨论:减小填充颗粒直径dp;采用分子量小的流动相,使Dg增加;减小液膜厚度df,Cl下降。但此时k又减小。因此,当保持固

18、定液含量不变时,可通过 增加固定液载体的比表面来降低df。但比 表面过大又会因吸附过强使峰拖尾。增加柱温,可增加Dl,但k值也减小,为保 持合适Cl值,应控制柱温。,27,b)液液色谱:传质阻力项C包括流动相传质阻力系数Cm和固定相传质阻力系数Cs。讨论:流动相传质阻力包括两方面:流动相中的传质阻力Cm、滞留的流动相传 质阻Cs力。分别与填充物大小 dp、扩散系数(Dm)、微孔大小及其数量等有 关。因此,降低流动相传质阻力的方法有:细颗粒固定相、增加组分在 固定相和流动相中的扩散系数D、适当降低线速度、短柱。固定相传质阻力与液膜厚度df、保留因子 k 和扩散系数Ds等有关。因此,降低固定相传质

19、阻力的方法有:与气液色谱中的表述相同。,sm,28,三、分离度(Resolution,R)同时反映色谱柱效能和选择性的一个综合指标。也称总分离效能指标或分辨率。其定义为:利用此式,可直接从色谱流出曲线上求出分离度R。R 越大,相邻组分分离越好。当R=1.5时,分离程度可达99.7%,因此R=1.5通常用作是否分开的判据。,29,第四节 色谱分离操作条件的选择,各项因素对板高H的影响,图中曲线的最低点,塔板高度最小,柱效最高,所以该点对应的流速即为最佳流速。,H,净影响,Cu,B/u,A,当u值较小时,分子扩散项B/u将成为影响色谱峰扩张的主要因素,此时,宜采用相对分子质量较大的载气(N2、Ar

20、),以使组分在载气中有较小的扩散系数。,当u较大时,传质项Cu将是主要控制因素。此时宜采用相对分子质量较小,具有较大扩散系数的载气(H2、He),以改善气相传质。,30,最佳线速和最小板高可以通过H=A+B/u+C u进行微分后求得。上图的虚线是速率理论中各因素对板高的影响。比较各条虚线可知,当u值较小是,分子扩散项B/u将成为影响色谱峰扩张的主要因素,此时,宜采用相对分子质量较大的载气(N2、Ar),以使组分在载气中有较小的扩散系数。另一方面,当u较大时传质项Cu将是主要控制因素。此时宜采用相对分子质量较小,具有较大扩散系数的载气(H2、He),以改善气相传质。当然,还须考虑与所用的检测器相

21、适应。,31,二、柱温的选择 柱温是一个重要的色谱操作参数,它直接影响分离效能和分析速度。柱温不能高于固定液的最高使用温度,否则会造成固定液大量挥发流失。某些固定液有最低操作温度。一般地说,操作温度至少必须高于固定液的熔点,以使其有效地发挥作用。降低柱温可使色谱柱的选择性增大,但升高柱温可以缩短分析时间,并且可以改善气相和液相的传质速率,有利于提高效能。所以,这两方面的情况均需考虑。,32,在实际工作中,一般根据试样的沸点选择柱温、固定液用量及载体的种类。对于宽沸程混合物,一般采用程序升温法进行。三、柱长和内径的选择 由于分离度正比于柱长的平方根,所以增加柱长对分离是有利的。但增加柱长会使各组

22、分的保留时间增加,延长分析时间。因此,在满足一定分离度的条件下,应尽可能使用较短的柱子。增加色谱柱的内径,可以增加分离的样品量,但由于纵向扩散路径的增加,会使柱效降低。,33,毛细管柱的发明使得气相色谱分析发生了革命性的变化!50 年代初,主要进行填充柱的理论和应用研究,并开始进行非填充柱(内径为十分之几毫米)的理论可行性研究。1956 年Golay正式提出了非填充柱(空心柱)的理论并制作出效率极高毛细管柱;次年发表了该研究论文。50 年代后期,一些研究人员都制成了各类毛细管柱,经测定,一些毛细管的理论塔板数可达到300,000!然而,自毛细管柱发明以来,20多年都没有广泛应用,主要是因为:1

23、)柱容量小;2)柱强度小;3)样品引入及管与检测器的连结问题;3)固定液涂渍的重现性不好;4)寿命短;5)柱易堵塞;6)专利1977年才过期。70 年代后期,以上问题大多得到解决,毛细管柱的应用越来越多。1987 年,荷兰Chrompack Inter.Coporation制成了世界最长、理论塔板数最多的熔融石英毛细管柱(2100m长,内径0.32mm,内壁固定液厚度0.1m,理论塔板数超过3,000,000)并被载入吉力斯世界记录。,第五节 毛细管气相色谱法,34,二、毛细管柱1.分类填充型:先在玻璃管内填充疏松载体,再拉制成毛细管,最后再涂渍固定液。开管型:按固定液涂渍方法不同,可分为(i

24、)涂壁开管柱(Wall-coated open tubular,WCOT)管内壁经处理后,直接涂渍固定液;管内壁经处理后,将固定液引入到管壁,再经高温处理,使其交联(Cross-lined)至管壁高效、耐高温、抗溶剂冲刷。管内壁经处理后,将固定液以化学键合(Bonded)的方式引入到管壁或预先涂 渍的硅胶上高热稳定性。(ii)载体涂渍开管柱(SCOT):管内壁经处理后,先涂载体,再涂固定液液膜厚,因而柱容量大。(iii)多孔层开管柱(Porous layer coated open tubular,PLOT)管内壁涂渍一层多孔吸附剂颗粒,不涂固定液,实际上是毛细管气固色谱柱。以上开管柱玻璃材料

25、已被外涂聚酰亚胺保护层的熔融石英管(含金属氧化合物 少、管壁更薄,因而不与待测物作用、柔韧性好、强度高、更易弯曲)所取代。此外,现在也发展了一种大口径开管柱(Megabore colum,0.53mm i.d.),可容许更大样品量(类似于填充柱),尽管柱效低些,但大大高于填充柱。,35,36,2.毛细管柱特点(i)渗透性好:可使用较长的色谱柱;(ii)相比率大:分配快,有利于提高柱效;加上保留因子k小,渗透性 好,因而分析速度快;(iii)柱容量小:因而进样量小。需采用分流技术并使用更高灵敏度的检 测器;(iv)总柱效高:尽管毛细管柱效比填充柱大,但仍处于同一数量级。但 毛细管柱长很大,因而总

26、柱效高。,37,38,39,第六节 气相色谱检测器,40,工作过程:1)在只有载气通过时,四个臂的温度都保持不变,电阻值也不变。此时,调节电路电阻使电桥平衡,AB两端无电压信号输出;2)当有样品随载气进入两个样品臂时,此时热导系数发生变化,或者说,测量臂的温度发生变化,其电阻亦发生变化,电桥失去平衡,AB两端有电压信号输出。当载气和样品的混合气体与纯载气的热导系数相差越大,则输出信号越强。特点:对任何气体均可产生响应,因而通用性好,而且线性范围宽、价格便宜、应用范围广。但灵敏度较低。*1979 年,出现了一种高灵敏度、基线漂移小、平衡时间短的“调制式单丝热导检测器:将参比气(载气)和样品、载气

27、混合气交替(10Hz)导入微型陶瓷热导池(5L)中,从而产生10Hz的交变信号,该信号正比于热导系数的差。因为放大器只检测频率为10Hz的信号,因此可克服热噪声的干扰。,41,影响TCD灵敏度的因素:1)桥电流 i:i 增加热敏元件温度增加元件与池体间温差增加气体热传导增加灵敏度增加。但 i 过大,热敏元件寿命下降。电流通常选择在100200 mA之间(N2作载气,100150 mA;H2作载气,150200 mA)。2)池体温度:池体温度低,与热敏元件间温差大,灵敏度提高。但温度过低,可使试样凝结于检测器中。通常池体温度应高于柱温。3)载气种类:载气与试样的热导系数相差越大,则灵敏度越高。通

28、常选择热导系数大的H2和Ar作载气。用N2作载气,热导系数较大的试样(如甲烷)可出现倒峰。4)热敏元件阻值:阻值高、电阻温度系数大(随温度改变,阻值改变大,或者说热敏性好)的热敏元件,其灵敏度高。综述:较大的桥电流、较低的池体温度、低分子量的载气以及具有大的电阻温度系数的热敏元件可获得较高的灵敏度。,42,2.火焰离子化检测器(FID)又称氢焰离子化检测器。主要用于可在H2-Air火焰中燃烧的有机化合物(如烃类物质)的检测。原理:含碳有机物在H2-Air火焰中燃烧产生碎片离子,在电场作用下形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离的给分。结构:主体为离子室,内有石英喷嘴、发射极(

29、极化极,此图中为火焰顶端)和收集极。工作过程:来自色谱柱的有机物与H2-Air混合并燃烧,产生电子和离子碎片,这些带电粒子在火焰和收集极间的电场作用下(几百伏)形成电流,经放大后测量电流信号(10-12 A)。,43,44,FID特点:1)灵敏度高(10-13g/s);2)线性范围宽(107数量级);3)噪声低;4)耐用且易于使用;5)为质量型检测器,色谱峰高取决于单位时间内引入检测器中组分的质量。在样品量一定时,峰高与载气流速成正比。因此在用峰高定量时,应控 制流速恒定!6)对无机物、永久性气体和水基本无响应(不足?),因此FID特别适于 水中和大气中痕量有机物分析或受水、N和S的氧化物污染

30、的有机物分析。7)对含羰基、羟基、卤代基和胺基的有机物灵敏度很低或根本无响应。8)样品受到破坏。,45,46,ECD 特点:1)响应电流i与浓度c是非线性的,即,该式类似于比尔定律。其中,i0为基流,K 为电子吸收系数(不同物质K值不同)。2)对如卤素基、过氧基、醌基、硝基等含电负性的功能团的分子具有极 高的选择性和灵敏度;但对含酰胺基和羟基的化合物以及烃类物质不 灵敏。3)与FID相比,ECD对样的破坏不大;4)线性范围为两个数量级,相对FID来说,这不算大;5)要求载气纯度要高(99.99%),否则杂质会降低基流;(通常将载气通 入480oC的紫铜屑除O2)。,47,4.火焰光度检测器(F

31、PD)FPD对含S、P化合物具有高选择性和高灵敏度的检测器。因此,也称硫磷检测器。主要用于SO2、H2S、石油精馏物的含硫量、有机硫、有机磷的农药残留物分析等。FPD结构:喷嘴+滤光片+光电管。原理:待测物在低温H2-Air焰中燃烧产生S、P化合物的分解产物并发射特征分子光谱。测量光谱的强度则可进行定量分析。,48,FPD 特点:1)对含S、P化合物有较高灵敏度和一定的选择性;2)对卤素气X2、N2、Sn、Cr、Se和Ge等也有响应;3)相对其它检测器如ECD和FID,FPD价格较贵。4)对测S的灵敏度比硫荧光检测器*(SCD)低;*硫荧光检测器(SCD):FPD检测器中含硫化合物燃烧产物可与

32、O3反应并产生与S含量成正比的荧 光,通过测定荧光强度来分析含S化合物。SCD的灵敏度极高。,含S、P化合物在氢焰中的变化过程如下:,49,第七节 气相色谱定性鉴定方法,由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可作为一种定性指标。目前各种色谱定性方法都是基于保留值的。但是不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属的。因此仅根据保留值对一个完全未知的样品定性是困难的。(一)利用纯物质对照定性 在一定的色谱条件下,一个未知物只有一个确定的保留时间。因此将已知纯物质在相同的色谱条件下的保留时间与未知物的保留时间进行比较,就可以定性鉴定未知物。若二者相同,

33、则未知物可能是已知的纯物质;不同,则未知物就不是该纯物质。纯物质对照法定性只适用于组分性质已有所了解,组成比较简单,且有纯物质的未知物,50,(二)相对保留值法 相对保留值is 是指组分i与基准物质s调整保留值的比值 is=tri/trS=Vri/Vrs 它仅随固定液及柱温变化而变化,与其它操作条件无关。相对保留值测定方法:在某一固定相及柱温下,分别测出组分i和基准物质s的调整保留值,再按上式计算即可。,51,第七节 气相色谱定性鉴定方法,用已求出的相对保留值与文献相应值比较即可定性。通常选容易得到纯品的,而且与被分析组分相近的物质作基准物质,如正丁烷、环己烷、正戊烷、苯、对二甲苯、环己醇、环

34、己酮等。(三)加入已知物增加峰高法 当未知样品中组分较多,所得色谱峰过密,用上述方法不易辨认时,或仅作未知样品指定项目分析时均可用此法。首先作出未知样品的色谱图,然后在未知样品加入某已知物,又得到一个色谱图。峰高增加的组分即可能为这种已知物。,52,GC分析是根据检测器对待测物的响应(峰高或峰面积)与待测物的量成正比的原理进行定量的。因此必须准确测定峰高h或峰面积A。1.峰面积A的测量:对称峰:峰高h与半峰宽的积:A=1.065 h W1/2不对称峰:峰高与平均峰宽的积:A=1/2 h(W0.15+W0.85)2.定量校正因子 由于检测器对不同物质的响应不同,因而两个相同的峰面积并不一定说明两

35、个物质的量相等!因此,在计算组分的量时,必须将峰面积A进行“校正”。1)绝对校正因子wi=fiAi 或 fi=wi/Ai通过此式可得到待测物单位峰面积对应的该物质的量。,第八节 气相色谱定量测定方法,53,2)相对校正因子fi 由于绝对校正因子fi与检测器灵敏度有关,它即不易准确测得(为什么?),因此定量分析中常用相对校正因子表示:即用一个物质作标准,用相对校正因子将所有待测物的峰面积校正成相对于这个标准物质的峰面积,使各组分的峰面积与其质量的关系有一个统一的标准进行折算。采用的标准物因检测器不同而不同:TCD苯;FID正庚烷。fi(w)=fi(w)/fs(w)=(Aswi/Aiws).通式当

36、w分别为质量m、摩尔M、和气体体积V时,上式分别表示为,54,3.相对校正因子的测量 准确称取被测物与标准物,混合后进样。从所得色谱图分别求出它们的峰面积,然后通过前述公式计算校正因子(省去“相对”二字)。必须注意:校正因子只与试样、标准物和检测器类型有关,与其它所有条件无关!可以查表得到。,55,4.定量校正方法1)归一化法:要求试样中所有n个组分全部流出色谱柱,并全部出峰!则其中组分 i 的含量为:fi 为i 物质的相对定量校正因子;Ai为其峰面积。此法简单、准确,操作条件影响小。但应用不多。因为谁知道试样有多少组分?应该出多少峰才叫全部出峰?2)外标法:或标准曲线法。以Ai对xi作图得标准曲线。该法不需校正因子。但进样 量和操作条件必须严格控制!外标法适于日常分析和大批量同类样品分析。3)内标法:在配制的每个标准溶液中以及待测试样中加一固定量为ms的内标物,以Ai/As对xi作图,得内标法校正曲线。对内标物的要求:样品中不含内标物;无反应;与各待测物保留时间和浓度相差不大;,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号