史上最全的数列通项公式的求法15种.doc

上传人:小飞机 文档编号:4894562 上传时间:2023-05-22 格式:DOC 页数:12 大小:1.17MB
返回 下载 相关 举报
史上最全的数列通项公式的求法15种.doc_第1页
第1页 / 共12页
史上最全的数列通项公式的求法15种.doc_第2页
第2页 / 共12页
史上最全的数列通项公式的求法15种.doc_第3页
第3页 / 共12页
史上最全的数列通项公式的求法15种.doc_第4页
第4页 / 共12页
史上最全的数列通项公式的求法15种.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《史上最全的数列通项公式的求法15种.doc》由会员分享,可在线阅读,更多相关《史上最全的数列通项公式的求法15种.doc(12页珍藏版)》请在三一办公上搜索。

1、最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。一、直接法根据数列的特征,使用作差法等直接写出通项公式。例1. 根据下列数列的前几项,说出数列的通项公式:1、2、1,2,5,8,123、4、1,-1,1,-15、1、0、1、0二、公式法利用等差数列或等比数列的定义求通项若已知数列的前项和与的关系,求数列的通项可用公式求解.(注意:求完后一定要考虑合并通项)例2已知数列的前项和满足求数列的通项公式.已知数列的前项和满足,求数列的通项公式. 已知等比

2、数列的首项,公比,设数列的通项为,求数列的通项公式。解析:由题意,又是等比数列,公比为,故数列是等比数列, 三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。也可以猜想出规律,然后正面证明。例3.(2002年北京春季高考)已知点的序列,其中,是线段的中点,是线段的中点,是线段的中点,(1) 写出与之间的关系式()。(2) 设,计算,由此推测的通项公式,并加以证明。(3) 略解析:(1) 是线段的中点, (2),=,=,猜想,下面用数学归纳法证明 当n=1时,显然成立; 假设n=k时命题成立,即 则n=k+1时

3、,= = 当n=k+1时命题也成立, 命题对任意都成立。变式:(2006,全国II,理,22,本小题满分12分)设数列an的前n项和为Sn,且方程x2anxan0有一根为Sn1,n1,2,3,()求a1,a2;()an的通项公式 四、累加(乘)法对于形如型或形如型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。例4. 若在数列中,求通项。解析:由得,所以,将以上各式相加得:,又所以 =例5. 在数列中,(),求通项。解析:由已知,又,所以=五、取倒(对)数法a、这种类型一般是等式两边取对数后转化为,再利用待定系数法求解b、数列有形

4、如的关系,可在等式两边同乘以先求出c、解法:这种类型一般是等式两边取倒数后换元转化为。例6.设数列满足求解:原条件变形为两边同乘以得.例7 、 设正项数列满足,(n2).求数列的通项公式.解:两边取对数得:,设,则 是以2为公比的等比数列,., 变式:1.已知数列an满足:a1,且an(1) 求数列an的通项公式;(2) 证明:对于一切正整数n,不等式a1a2an2n!2、若数列的递推公式为,则求这个数列的通项公式。3、已知数列满足时,求通项公式。4、已知数列an满足:,求数列an的通项公式。5、若数列a中,a=1,a= nN,求通项a 六、迭代法迭代法就是根据递推式,采用循环代入计算.例8、

5、(2003高考广东)设a 0为常数,且a n3 n -12 a n -1(n为正整数)证明对任意n1 , a n 3 n(1)n -12 n (1)n 2 n a 0证明: a n3 n -12 a n -13 n -12(3 n -22 a n -2) 3 n -123 n -22 2(3 n -32 a n -3) 3 n -123 n -22 2 3 n -32 3(3 n -42 a n -4) 3 n -123 n -22 23 n 3 (1)n -12 n -1(1)n 2 n a 0(1)n 2 n a 0 前面的n项组成首项为3 n -1,公比为的等比数列,这n项的和为: 3

6、n(1)n -12 n a n 3 n(1)n -12 n (1)n 2 n a 0七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。1、通过分解常数,可转化为特殊数列a+k的形式求解。一般地,形如a=p a+q(p1,pq0)型的递推式均可通过待定系数法对常数q分解法:设a+k=p(a+k)与原式比较系数可得pkk=q,即k=,从而得等比数列a+k。例9、数列a满足a=1,a=

7、a+1(n2),求数列a的通项公式。解:由a=a+1(n2)得a2=(a2),而a2=12=1,数列 a2是以为公比,1为首项的等比数列a2=() a=2()说明:通过对常数1的分解,进行适当组合,可得等比数列 a2,从而达到解决问题的目的。练习、1数列a满足a=1,,求数列a的通项公式。解:由得设a,比较系数得解得是以为公比,以为首项的等比数列 2、已知数列满足,且,求解:设,则,是以为首项,以3为公比的等比数列点评:求递推式形如(p、q为常数)的数列通项,可用迭代法或待定系数法构造新数列来求得,也可用“归纳猜想证明”法来求,这也是近年高考考得很多的一种题型2、递推式为(p、q为常数)时,可

8、同除,得,令从而化归为(p、q为常数)型、例10已知数列满足, ,求解:将两边同除,得设,则令条件可化成,数列是以为首项,为公比的等比数列因,3、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例11:设数列:,求.解:令化简得:所以解得 ,所以又因为,所以数列是以5为首项,3为公比的等比数列。从而可得变式:(2006,山东,文,22,本小题满分14分)已知数列中,在直线y=x上,其中n=1,2,3 ()令 ()求数列4、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,z.从而转化为是公比为的等比数列

9、。例12:设数列:,求.5. 递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例13:已知数列中,,,求。变式:1.已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列 2.已知数列中,,,求3.已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设

10、数列,求证:数列是等差数列;求数列的通项公式及前项和。八:特征根法。1、设已知数列的项满足,其中求这个数列的通项公式。作出一个方程则当时,为常数列,即,其中是以为公比的等比数列,即.2.对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例14:(1)已知数列满足,求数列的通项公式。解法一(待定系数迭加法)由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,。把以上各式相加,得。解法二(特征根法:这种方

11、法一般不用于解答题):数列:, 的特征方程是:。 ,。又由,于是 故(2)已知数列满足:求解:作方程 当时,数列是以为公比的等比数列.于是九:不动点法,形如解法:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征方程有两个相异的根、时,则是等比数列。例15:已知数列满足性质:对于且求的通项公式. 例:已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?变式:(2005,重庆,文,22,本小题满分12分)数列记()求b1、b2、b3、b4的值; ()求数列的通项公式及

12、数列的前n项和十:换元法:类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。例16 已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例18. 已知数列满足,求 。解析:设, , ,总之,求数列的通项公式,就是将已知数列转化成等差(或等比)数列,从而利用等差(或等比)数列的通项公式求其通项。十一。双数列解法:根据所给两个数列递推公式的关系,灵

13、活采用累加、累乘、化归等方法求解。例19. 已知数列中,;数列中,。当时,,,求,.解:因所以即(1)又因为所以.即(2)由(1)、(2)得:, 十二、周期型 解法:由递推式计算出前几项,寻找周期。例20:若数列满足,若,则的值为_。变式:(2005,湖南,文,5)已知数列满足,则=( )A0BCD十三、分解因式法当数列的关系式较复杂,可考虑分解因式和约分化为较简形式,再用其它方法求得an.例21.已知数列满足(n),且有条件2).解:由得:对n,再由待定系数法得:十四、循环法数列有形如的关系,如果复合数列构不成等差、等比数列,有时可考虑构成循环关系而求出例22.在数列中,解:由条件即即每间隔6项循环一次.1998=6333,十五、开方法对有些数列,可先求再求2bn=an+an+1,a2n+1=bnbn+1.例23、两个数列它们的每一项都是正整数,且对任意自然数、成等差数列,、成等比数列,解:由条件有: 由式得:把、代入得:,变形得).0,.是等差数列.因故小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。做题时要不断总结经验,多加琢磨。总结方法比做题更重要!方法产生于具体数学内容的学习过程中. - 12 -

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号