微波及生物传感器第十二章.ppt

上传人:牧羊曲112 文档编号:4911384 上传时间:2023-05-23 格式:PPT 页数:83 大小:2.92MB
返回 下载 相关 举报
微波及生物传感器第十二章.ppt_第1页
第1页 / 共83页
微波及生物传感器第十二章.ppt_第2页
第2页 / 共83页
微波及生物传感器第十二章.ppt_第3页
第3页 / 共83页
微波及生物传感器第十二章.ppt_第4页
第4页 / 共83页
微波及生物传感器第十二章.ppt_第5页
第5页 / 共83页
点击查看更多>>
资源描述

《微波及生物传感器第十二章.ppt》由会员分享,可在线阅读,更多相关《微波及生物传感器第十二章.ppt(83页珍藏版)》请在三一办公上搜索。

1、1,微波传感器,一、微波概述,微波是波长为1 mm1 m的电磁波,可以细分为三个波段:分米波、厘米波、毫米波。微波既具有电磁波的性质,又不同于普通无线电波和光波的性质,是一种相对波长较长的电磁波。具有下列特点:定向辐射的装置容易制造;遇到各种障碍物易于反射;绕射能力差;传输特性好,传输过程中受灰尘、强光的影响小;介质对微波的吸收与介质的介电常数成比例。,2,二、微波传感器的原理和组成,1、微波传感器的测量原理及分类 微波传感器由发射天线发出微波,遇到被测物体时将被吸收或反射,使微波功率发生变化。若利用接收天线,接收到通过被测物体或由被测物体反射回来的微波,并将它转换为电信号,再经过信号调理电路

2、,即可以显示出被测量 根据微波传感器的原理,微波传感器可以分为反射式和遮断式两类。,3,(1)反射式微波传感器 反射式微波传感器是通过检测被测物反射回来的微波功率或经过的时间间隔来测量被测量的。通常它可以测量物体的位置、位移、厚度等参数。(2)遮断式微波传感器 遮断式微波传感器是通过检测接收天线收到的微波功率大小来判断发射天线与接收天线之间有无被测物体或被测物体的厚度、含水量等参数的。,4,2、微波传感器的组成 微波传感器通常由微波发射器(即微波振荡器)、微波天线及微波检测器三部分组成。(1)微波振荡器及微波天线 微波振荡器是产生微波的装置。由于微波波长很短,即频率很高(300 MHz300

3、GHz),要求振荡回路中具有非常微小的电感与电容,因此不能用普通的电子管与晶体管构成微波振荡器。构成微波振荡器的器件有调速管、磁控管或某些固态器件.,5,由微波振荡器产生的振荡信号需要用波导管传输,并通过天线发射出去。为了使发射的微波具有尖锐的方向性,天线要具有特殊的结构。常用的天线如图所示。,常用的微波天线扇形喇叭天线;(b)圆锥形喇叭天线;(c)旋转抛物面天线;(d)抛物柱面天线,6,(2)微波检测器 电磁波作为空间的微小电场变动而传播,所以使用电流-电压特性呈现非线性的电子元件作为探测它的敏感探头,敏感探头在其工作频率范围内必须有足够快的响应速度。几兆赫以下可用半导体PN结;频率比较高的

4、可使用肖特基结;灵敏度要求特别高的可使用超导材料的约瑟夫逊结检测器、SIS检测器等超导隧道结元件;接近光的频率可使用由金属-氧化物-金属构成的隧道结元件。,7,3、微波传感器的特点 微波传感器作为一种新型的非接触传感器具有如下特点:有极宽的频谱(波长=1.0 mm1.0m)可供选用,可根据被测对象的特点选择不同的测量频率;在烟雾、粉尘、水汽、化学气氛以及高、低温环境中对检测信号的传播影响极小,因此可以在恶劣环境下工作;时间常数小,反应速度快,可以进行动态检测与实时处理,便于自动控制;,8,测量信号本身就是电信号,无须进行非电量的转换,从而简化了传感器与微处理器间的接口,便于实现遥测和遥控;微波

5、无显著辐射公害。微波传感器存在的主要问题是零点漂移和标定尚未得到很好的解决。其次,使用时外界环境因素影响较多,如温度、气压、取样位置等。,9,三、微波传感器的应用,1、微波液位传感器,微波液位计,10,2、微波湿度传感器 水分子是极性分子,常态下成偶极子形式杂乱无章地分布着。在外电场作用下,偶极子会形成定向排列。当微波场中有水分子时,偶极子受场的作用而反复取向,不断从电场中得到能量(储能),又不断释放能量(放能),前者表现为微波信号的相移,后者表现为微波衰减。,使用微波传感器,测量干燥物体与含一定水分的潮湿物体所引起的微波信号的相移与衰减量,就可以换算出物体的含水量。,11,下图给出了测量酒精

6、含水量的仪器框图,图中,MS产生的微波功率经分功率器分成两路,再经衰减器A1、A2分别注入到两个完全相同的转换器T1、T2中。其中,T1放置无水酒精,T2放置被测样品。相位与衰减测定仪(PT、AT)分别反复接通两电路(T1和T2)输出,自动记录与显示它们之间的相位差与衰减差,从而确定样品酒精的含水量。,12,3、微波测厚仪 微波测厚仪是利用微波在传播过程中遇到被测物体金属表面被反射,且反射波的波长与速度都不变的特性进行测厚的。微波测厚仪原理如图所示,在被测金属物体上下两表面各安装一个终端器。微波信号源发出的微波,经过环行器A、上传输波导管传输到上终端器,由上终端器发射到被测物体上表面上,微波在

7、被测物体上表面全反射后又回到上终端器,再经过传输导管、环行器A、下传输波导管传输到下终端器。由下终端器发射到被测物体下表面的微波,经全反射后又回到下终端器,再经过传输导管回到环行器A。因此被测物体的厚度与微波传输过程中的行程长度有密切关系,当被测物体厚度增加时,微波传输的行程长度便减小。,13,微波测厚仪原理图,14,一般情况下,微波传输的行程长度的变化非常微小。为了精确地测量出这一微小变化,通常采用微波自动平衡电桥法,前面讨论的微波传输行程作为测量臂,而完全模拟测量臂微波的传输行程设置一个参考臂(图右部)。若测量臂与参考臂行程完全相同,则反相叠加的微波经过检波器C检波后,输出为零。若两臂行程

8、长度不同,两路微波叠加后不能相互抵消,经检波器后便有不平衡信号输出。此不平衡差值信号经放大后控制可逆电机旋转,带动补偿短路器产生位移,改变补偿短路器的长度,直到两臂行程长度完全相同,放大器输出为零,可逆电机停止转动为止。,15,4、微波无损检测 微波无损检测是综合利用微波与物质的相互作用,一方面微波在不连续界面处会产生反射、散射、透射,另一方面微波还能与被检材料产生相互作用,此时的微波场会受到材料中的电磁参数和几何参数的影响。通过测量微波信号基本参数的改变即可达到检测材料内部缺陷的目的。,16,生物传感器,一、生物传感器的基本概念,生物传感器通常是指由一种生物敏感部件和转化器紧密结合,对特定种

9、类化学物质或生物活性物质具有选择性和可逆响应的分析装置。它是发展生物技术必不可少的一种先进的检测与监控方法,也是对物质在分子水平上进行快速和微量分析的方法。,17,1、生物传感器工作原理,生物传感器的工作原理是待测物质经扩散作用进入固定生物膜敏感层,经分子识别而发生生物学作用,产生的信息如光、热、音等被相应的信号转换器变为可定量和处理的电信号,再经二次仪表放大并输出,以电极测定其电流值或电压值,从而换算出被测物质的量或浓度。,18,(1)将化学变化转变成电信号,例,酶催化特定物发生反应,从而使特定生成物的量有所增减.用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器。,(

10、2)将热变化转换成电信号,固定化的生物材料与相应的被测物作用时常伴有热的变化。这类生物传感器的工作原理是把反应的热效应借热敏电阻转换为阻值的变化。,19,(3)将光信号转变为电信号,例如,过氧化氢酶,能催化过氧化氢发光,因此如设法将过氧化氢酶膜附着在光纤或光敏二极管的前端,再和光电流测定装置相连,即可测定过氧化氢含量。还有很多细菌能与特定底物发生反应,产生荧光。也可以用这种方法测定底物浓度.,上述三原理的生物传感器共同点:都是将分子识别元件中的生物敏感物质与待测物发生化学反应,将反应后所产生的化学或物理变化再通过信号转换器转变为电信号进行测量,这种方式统称为间接测量方式.,20,(4)直接产生

11、电信号方式,这种方式可以使酶反应伴随的电子转移、微生物细胞的氧化直接(或通过电子递体的作用)在电极表面上发生。根据所得的电流量即可得底物浓度。,21,二、生物传感器分类,1、根据传感器输出信号的产生方式,可分为生物亲合型生物传感器、代谢型或催化型生物传感器;2、根据生物传感器的信号转换器可分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等 3、根据生物传感器中生物分子识别元件上的敏感材料可分为酶传感器、微生物传感器、免疫传感器、组织传感器、基因传感器、细胞及细胞器传感器。,22,生物亲合型传感器 被测物质与分子识别元件上的敏感物质具有生物亲合作用,即

12、二者能特异地相结合,同时引起敏感材料的分子结构和/或固定介质发生变化。例如:电荷、温度、光学性质等的变化。反应式可表示为:S(底物)+R(受体)=SR,23,代谢型传感器 底物(被测物)与分子识别元件上的敏感物质相作用并生成产物,信号转换器将底物的消耗或产物的增加转变为输出信号,这类传感器称为代谢型传感器,其反应形式可表示为 S(底物)R(受体)=SR P(生成物),24,每一类又都包含许多种具体的生物传感器例如,仅酶电极一类,根据所用酶的不同就有几十种,如葡萄糖电极、尿素电极、尿酸电极、胆固醇电极、乳酸电极、丙酮酸电极等等就是葡萄糖电极也并非只有一种,有用pH电极或碘离子电极作为转换器的电位

13、型葡萄糖电极,有用氧电极或过氧化氢电极作为转换器的电流型葡萄糖电极等实际上还可再细分。,25,三、生物传感器组成部分,一是生物分子识别元件(感受器),是具有分子识别能力的生物活性物质(如组织切片、细胞、细胞器、细胞膜、酶、抗体、核酸、有机物分子等);二是信号转换器(换能器),主要有电化学电极(如电位、电流的测量)、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等,当待测物与分子识别元件特异性结合后,所产生的复合物(或光、热等)通过信号转换器变为可以输出的电信号、光信号等,从而达到分析检测的目的。,26,敏感器件(分子识别元件),27,四、生物传感器优点,(1)根据生物反

14、应的特异性和多样性,理论上可以制成测定所有生物物质的传感器,因而测定范围广泛(2)一般不需进行样品的预处理,它利用本身具备的优异选择性把样品中被测组分的分离和检测统一为一体,测定时一般不需另加其他试剂,使测定过程简便迅速,容易实现自动分析(3)体积小、响应快、样品用量少,可以实现连续在位检测,28,(4)通常其敏感材料是固定化生物元件,可反复多次使用(5)准确度高,一般相对误差可达到1%以内(6)可进行活体分析(7)传感器连同测定仪的成本远低于大型的分析仪,因而便于推广普及(8)有的微生物传感器能可靠地指示微生物培养系统内的供氧状况和副产物的产生,能得到许多复杂的物理化学传感器综合作用才能获得

15、的信息,29,在食品分析的应用,五、应用,食品成分分析食品添加剂的分析农药和抗生素残留量分析微生物和生物毒素的检验食品鲜度的检测,30,在环境监测中的应用,水质分析:一个典型应用是测定生化需氧量(BOD),传统方法测BOD需5天,且操作复杂。1977年Karube等首次报道了BOD微生物传感器,只需15分钟即能测出结果,连续使用寿命达17天;废气或环境大气的监测:可用于测定空气中SO2、NOX、CO2、NH3、CH4等的含量;农药和抗生素残留量的分析:用乙酰胆碱酯酶和丁酰胆碱酯酶为敏感材料制作的离子敏场效应晶体管酶传感器可用于蔬菜等样品中有机磷农药DDVP和伏杀磷等的测定,31,在生物医学上的

16、应用,临床应用:用酶、免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提出依据。生物医药:利用生物工程技术生产药物时,将生物传感器用于生化反应的监视,可以迅速地获取各种数据,有效地加强生物工程产品的质量管理。,32,在军事上的应用,现代战争往往是在核武器、化学武器、生物武器威胁下进行的战争。侦检、鉴定和检测是进行有效化学战和生物战防护的前提。由于具有高度特异性、灵敏性和能快速地探测化学战剂和生物战剂(包括病毒、细菌和毒素等)的特性,生物传感器将是最重要的一类化学战剂和生物战剂侦检器材。如烟碱乙酰胆碱受体生物传感器和某种麻醉剂受体生物传感器能在10s内侦检出10-9浓度级的生化战剂

17、,包括委内瑞拉马脑炎病毒、黄热病毒、炭疽杆菌、流感病毒等。,33,德国研发的环境废水BOD分析仪,34,手掌型葡萄糖(glucose)分析仪,35,发酵罐,主机,计算机,SBA-60型生物传感在线分析系统,为发酵自动控制提供了新的基础平台,36,机器人传感器,37,机器人,38,机器人大脑主板机器人思想程序机器人感知传感器机器人手脚马达机器人骨架机械结构机器人食物电池,机器人的组成,39,传感器在机器人中的应用,机器人是由计算机控制的复杂机器,它具有类似人的肢体及感官功能;动作程序灵活;有一定程度的智能;在工作时可以不依赖人的操纵。机器人传感器在机器人的控制中起了非常重要的作用,正因为有了传感

18、器,机器人才具备了类似人类的知觉功能和反应能力。,40,给机器人装备什么样的传感器,对这些传感器有什么要求,这是设计机器人感觉系统时遇到的首要问题。选择机器人传感器应当完全取决于机器人的工作需要和应用特点。,41,机器人传感器可分为内部检测传感器和外部检测传感器两大类。内部检测传感器是以机器人本身的坐标轴来确定其位置。它安装在机器人自身中用来感知机器人自己的状态,以调整和控制机器人的行动。它通常由位置、加速度、速度及压力传感器组成。外界检测传感器用于机器人对周围环境、目标物的状态特征获取信息,使机器人和环境能发生交互作用,从而使机器人对环境有自校正和自适应能力。外界检测传感器通常包括触觉、接近

19、觉、视觉、听觉、嗅觉等传感器。,机器人传感器分类,传感器在机器人身上的分布,44,能踢球的机器人,45,对运动的球类有正确反应的机器人,能打网球的机器人,机器人足球比赛,46,能行走的机器人,47,服务机器人,机器人伴舞,机器人奏乐,48,可爱的小机器人,能上台阶并避开障碍物的机器人,能自己站起来的机器人,49,排爆机器人,我国沈阳自动化所研制的PXJ-2机器人也加入了公安部队的行 列。,50,消防机器人,消防机器人作为特种消防设备可代替消防队员接近火场实施有效的灭火救援、化学检验和火场侦察。它的应用将提高消防部队扑灭特大恶性火灾的实战能力,对减少国家财产损失和灭火救援人员的伤亡将产生重要的作

20、用。,51,机器人轮椅主要有口令识别与语音合成、机器人自定位、动态随机避障、多传感器信息融合、实时自适应导航控制等功能。,52,军事机器人,我国引进的排爆机器人,进攻型机器人,53,工业机器人,核工业机器人,汽车喷漆机器人,54,机器人的手,55,机械手在汽车加工中的应用,机械手能按照程序焊接和安装汽车部件,是机器人的雏形。,56,激光焊接机械手,57,一、智能式传感器的概述 智能式传感器(Intelligent sensor或Smart sensor)自20世纪70年代初出现以来,随着微处理器技术的迅猛发展及测控系统自动化、智能化的发展,要求传感器准确度高、可靠性高、稳定性好,而且具备一定的

21、数据处理能力,并能够自检、自校、自补偿。传统的传感器已不能满足这样的要求。另外,为制造高性能的传感器,光靠改进材料工艺也很困难,需要利用计算机技术与传感器技术相结合来弥补其性能的不足。计算机技术使传感器技术发生了巨大的变革,微处理器(或微计算机)和传感器相结合,产生了功能强大的智能式传感器。所谓智能式传感器,就是一种带有微处理机的,兼有信息检测、信号处理、信息记忆、逻辑思维与判断功能的传感器。,智能传感器,58,传感器与微处理机结合可以通过以下两个途径来实现:一是采用微处理机或微型计算机系统以强化和提高传统传感器的功能,即传感器与微处理机可分为两个独立部分,传感器的输出信号经处理和转化后由接口

22、送到微处理机部分进行运算处理。这就是我们指的一般意义上的智能传感器,又称传感器的智能化。二是借助于半导体技术把传感器部分与信号预处理电路、输入输出接口、微处理器等制作在同一块芯片上,即成为大规模集成电路智能传感器,简称集成智能传感器。集成智能传感器具有多功能、一体化、精度高、适宜于大批量生产、体积小和便于使用等优点,它是传感器发展的必然趋势,它的实现将取决于半导体集成化工艺水平的提高与发展。,59,就目前来看,已有不少以组合形式出现的智能传感器作为产品投入市场,如美国Honeywell公司推出的DSTJ-3000型硅压阻式智能传感器,Par Scientific 公司的1000系列数字式石英智

23、能传感器。我国也着手智能传感器的开发与研究,主要是在现有使用的传感器中,采用先进的微处理机和微型计算机系统,使之完成第一类途径的智能化。智能传感器因其在功能、精度、可靠性上较普通传感器有很大提高,已经成为传感器研究开发的热点。近年来,随着传感器技术和微电子技术的发展,智能传感器技术也发展很快。发展高性能的以硅材料为主的各种智能传感器已成为必然。,60,二、智能传感器的功能和构成 无论是传感器的智能化,还是集成智能化传感器,都是带有微机的兼具检测信息和处理信息功能的传感器,可统称为智能式传感器。和传统的传感器相比,智能化传感器具有以下功能:具有逻辑判断、统计处理功能。可对检测数据进行分析、统计和

24、修正,还可进行线性、非线性、温度、噪声、响应时间、交叉感应以及缓慢漂移等的误差补偿,提高了测量准确度。具有自诊断、自校准功能。可在接通电源时进行开机自检,可在工作中进行运行自检,并可实时自行诊断测试,以确定哪一组件有故障,提高了工作可靠性。,61,具有自适应、自调整功能。可根据待测物理量的数值大小及变化情况自动选择检测量程和测量方式,提高了检测适用性。具有组态功能。可实现多传感器、多参数的复合测量,扩大了检测与使用范围。具有记忆、存储功能。可进行检测数据的随时存取,加快了信息的处理速度。具有数据通讯功能。智能化传感器具有数据通讯接口,能与计算机直接联机,相互交换信息,提高了信息处理的质量。,6

25、2,计算机软件在智能传感器中起着举足轻重的作用。由于“电脑”的加入,智能传感器可通过各种软件对信息检测过程进行管理和调节,使之工作在最佳状态,从而增强了传感器的功能,提升了传感器的性能。此外,利用计算机软件能够实现硬件难以实现的功能,因为以软件代替部分硬件,可降低传感器的制作难度。智能式传感器系统一般构成框图如图所示。其中作为系统“大脑”的微型计算机,可以是单片机、单板机,也可以是微型计算机系统。,63,智能传感器的结构框图,64,三、传感器的智能化,1、传感器的智能化概念 传感器的智能化指传感器与微处理机可分为两个独立部分,传感器的输出信号经处理和转化后由接口送入微处理机部分进行运算处理。这

26、类智能传感器主要由传感器、微处理器及其相关电路组成。传感器将被测的物理量转换成相应的电信号,送到信号调理电路中,进行滤波、放大、模-数转换后,送到微处理机中。微处理机是智能传感器的核心,它不但可以对传感器测量数据进行计算、存储、数据处理,还可以通过反馈回路对传感器进行调节。由于微处理机充分发挥各种软件的功能,可以完成硬件难以完成的任务,从而大大降低了传感器制造的难度,提高了传感器的性能,降低了成本。,65,微型计算机或微处理机是智能式传感器的核心。传感器的信号经一定的硬件电路处理后,以数字信号的形式进入计算机,于是计算机即可根据其内存中驻留的软件实现对测量过程的各种控制、逻辑判断和数据处理以及

27、信息输送等功能,从而使传感器获得智能。在智能传感器中,其控制功能、数据处理功能和数据传输功能尤为重要。实际上,为了使智能式传感器真正具有智能,控制功能就应该包括:键盘控制功能、量程自动切换功能、多路与多路通道切换功能、数据极限判断与越限报警功能、自诊断与自校正功能。例如为使智能式传感器具有自校正功能,在传感器系统设计时,可考虑预留一路模拟量输入通道作自校正用,然后通过计算机编程实现自校正。,66,该程序执行步骤为:所用微机先向/转换口输出一个定值(固定代码),经DAC变换为对应的模拟电压值,再送到/通路的自校正输入端。此后,由微机启动ADC,待/转换结束,再取回转换结果值,并与原送出的代码进行

28、比较。如结果相符或误差在允许范围内,则认为自校正功能正常。若感觉仅在一点上进行自校正还不能说明问题,可以设置 2 3个自校正点,如可设置其零点、中点及满刻度点为自校正点,并分三次比较。通过比较和判断,确定输入、输出以及接口等是否正常。,67,2、传感器的智能化实例 下图是智能式应力传感器的硬件结构图。智能式应力传感器用于测量飞机机翼上各个关键部位的应力大小,并判断机翼的工作状态是否正常以及故障情况。它共有6路应力传感器和1路温度传感器,其中每一路应力传感器由4个应变片构成的全桥电路和前级放大器组成,用于测量应力大小。温度传感器用于测量环境温度,从而对应力传感器进行误差修正。采用8031单片机作

29、为数据处理和控制单元。多路开关根据单片机发出的命令轮流选通各个传感器通道,0通道作为温度传感器通道,16通道分别为6个应力传感器通道。程控放大器则在单片机的命令下分别选择不同的放大倍数对各路信号进行放大。该智能式传感器具有较强的自适应能力,它可以判断工作环境因素的变化,进行必要的修正,以保证测量的准确性。,68,智能式应力传感器的硬件结构图,69,智能式应力传感器具有测量、程控放大、转换、处理、模拟量输出、打印键盘监控及通过串口与计算机通信的功能。其软件采用模块化和结构化的设计方法,软件结构如图所示。主程序模块完成自检、初始化、通道选择以及各个功能模块调用的功能。其中信号采集模块主要完成数据滤

30、波、非线性补偿、信号处理、误差修正以及检索查表等功能。故障诊断模块的任务是对各个应力传感器的信号进行分析,判断飞机机翼的工作状态及是否存在损伤或故障。键盘输入及显示模块具有以下任务:,70,查询是否有键按下,若有键按下则反馈给主程序模块,主程序模块根据键意执行或调用相应的功能模块;显示各路传感器的数据和工作状态。输出打印模块主要控制模拟量输出以及控制打印机完成打印任务。通信模块主要控制RS232串行通信口和上位微机发通信。,71,智能式应力传感器的软件结构图,72,四、集成智能传感器,1、集成智能传感器的发展方向集成电路和微机械工艺促进了传感器技术的发展,改变了传感器作为单纯物理量转换的传统概

31、念。目前,传感器的发展主要集中在集成化和智能化两个方面。,73,传感器的集成化是指将多个功能相同或不同的敏感器件制作在同一个芯片上构成传感器阵列。集成化主要有三个方面的含义:一是将多个功能完全相同的敏感单元集成在同一个芯片上,用来测量被测量的空间分布信息,例如压力传感器阵列或我们熟知的CCD器件;二是对多个结构相同、功能相近的敏感单元进行集成,例如将不同气敏传感元集成在一起组成“电子鼻”,利用各种敏感元对不同气体的交叉敏感效应,采用神经网络模式识别等先进数据处理技术,可以对组成混合气体的各种成分同时监测,得到混合气体的组成信息,同时提高气敏传感器的测量精度;这层含义上的集成还有一种情况是将不同

32、量程的传感元集成在一起,可以根据待测量的大小在各个传感元之间切换,在保证测量精度的同时,扩大传感器的测量范围;三是指对不同类型的传感器进行集成,例如集成有压力、温度、湿度、流量、加速度、化学等敏感单元的传感器,能同时测到环境中的物理特性或化学参量,用来对环境进行监测。,74,集成电路和各种传感器的特征尺寸已达到亚微米和深亚微米量级,由于非电子元件接口未能做到同等尺寸而限制了其体积、重量、价格等的减小。智能化是将传感器(或传感器阵列)与信号处理电路和控制电路集成在同一芯片上。系统能够通过电路进行信号提取和信号处理,根据具体情况自主地对整个传感器系统进行自检、自校准和自诊断,并能根据待测物理量的大

33、小及变化情况自动选择量程和测量工作方式。和经典的传感器相比,集成智能传感器能够减小系统的体积,降低制造成本,提高测量精度,增强传感器功能,是目前国际上传感器研究的热点,也是未来传感器发展的主流。,75,2、智能传感器的研究热点 1)物理转化机理 理论上讲,有很多种物理效应可以将待测物理量转换为电学量。在智能传感器出现之前,为了数据读取的方便,人们选择物理转化机理时,被迫优先选择那些输入输出传递函数为线性的转化机理,而舍弃掉其它传递函数为非线性,但具有长期稳定性、精确性等性质的转换机理或材料。由于智能传感器可以很容易对非线性的传递函数进行校正,得到一个线性度非常好的输出结果,从而消除了非线性传递

34、函数对传感器应用的制约,因此一些科研工作者正在对这些稳定性好、精确度高、灵敏度高的转换机理或材料重新进行研究。,76,2)数据融合理论数据融合是智能传感器理论的重要领域,也是各国研究的热点。数据融合通过分析各个传感器的信息,来获得更可靠、更有效、更完整的信息,并依据一定的原则进行判断,作出正确的结论。对于由多个传感器组成的阵列,数据融合技术能够充分发挥各个传感器的特点,利用其互补性、冗余性,提高测量信息的精度和可靠性,延长系统的使用寿命,进而实现识别、判断和决策。,77,多传感器系统的融合中心接受各传感器的输入信息,得到一个基于多传感器决策的联合概率密度函数,然后按一定的准则作出最后决策。融合

35、中心常用的融合方法有错误率最小化法、NP法、自适应增强学习法、广义证据处理法等等。传感器数据融合是传感器技术、模式识别、人工智能、模糊理论、概率统计等交叉的新兴学科,目前还有许多问题没有解决,如最优的分布检测方法、数据融合的分布式处理结构、基于模糊理论的融合方法、神经网络应用于多传感器系统、多传感器信号之间的相互耦合、系统功能配置及冗余优化设计等,这些问题也是当今数据融合理论的研究热点。,78,3)CMOS工艺兼容的传感器制造与集成封装技术 集成式微型智能传感器是受集成电路制作工艺的牵引而发展起来的,如何充分利用已经行之有效的大规模集成电路制作技术,是智能传感器降低成本,提高质量,增加效益,批

36、量生产的最可行,最有效的途径。但传统的微机械传感器制作工艺与CMOS工艺兼容性较差。为了保证加工应力能完全松弛,微机械结构需要长时间的高温退火;而为了成功地实施必要的曝光,CMOS技术需要非常平整的表面,这就造成了矛盾。因为如果先完成机械加工工序,基底的平面性将会有所牺牲;如果先完成CMOS工序,基底将经受高温退火。这使得传感器敏感单元与大规模集成电路进行单片集成时产生困难,限制了智能传感器向体积缩小、成本降低与生产效率提高的方向发展。为了解决这个“瓶颈”问题,目前在研究二次集成技术的同时,智能传感器的工艺研究热点集中在研制与CMOS工艺兼容的各种传感器结构及其制造工艺流程上。,79,如前所述

37、,由于非电子元件接口未能做到同等尺寸缩微,因而限制了其体积、重量等的减小。当前,集成式微型智能传感器正朝着更高功效及轻、薄、短、小的方向发展,传统的封装技术将无法满足这些需求。对于新的集成式微型智能传感器来说,有关分离和封装问题可能是其商品化的最大障碍。现阶段,制造微机械的加工设备和工艺与制造IC的设备和工艺是紧密匹配的,但是,封装技术还未能达到同样高的匹配水准。虽然单片集成式微型智能传感器商品化的成功已能对传统的封装技术产生一定程度的影响,但仍需要进行广泛的改进和提高。因此,一些新封装技术的研究和开发已越来越得到人们的重视,开发更先进的封装形式及其技术也成为集成式微型智能传感器制造相关技术的

38、研究热点。,80,3、集成智能传感器系统举例 从前面讨论可知,智能传感器是“电五官”与“微电脑”的有机结合,对外界信息具有检测、判断、自诊断、数据处理和自适应能力的集成一体化的多功能传感器。这种传感器还具有与主机自动对话、自行选择最佳方案的能力。它还能将已取得的大量数据进行分割处理,实现远距离、高速度、高精度的传输。目前,这类传感器虽然尚处于研究开发阶段,但是已出现不少实用的智能传感器。,81,混合集成压力智能传感器 混合集成压力智能传感器是采用二次集成技术制造的混合智能传感器,下图是混合智能传感器的组成框图,即在同一个管壳内封装了微控制器、检测环境参数的各种传感元件、连接传感元件和控制器的各

39、种接口/读出电路、电源管理器、晶振、电池、无线发送器等电路及器件,具有数据处理功能,并且可以根据环境参数的变化情况,自主地开始测量或者改变测试频率,具有了智能化的特点。智能传感器系统的核心是Motorola公司的 68HC11微控制器(MCU),其中包含有内存、八位/、时序电路、串行通信电路。MCU与前台传感器间内部数据传递通过内部总线进行。,82,传感系统包括了温度传感器、压力传感器阵列、加速度传感器阵列、启动加速度计阵列、湿度传感器等多种传感器或传感器阵列。MCU将传感器的测量数据转换为标准格式,并对数据进行储存,然后通过系统内的无线发送器或RS-232 接口传送出去。传感器由6电池供电,功耗小于700,至少能够连续工作180天。整个智能传感器微系统的体积仅仅为5cm3,相当于一个火柴盒那么大。美国Honeywell公司研制的DSTJ3000智能压差压力传感器,能在同一块半导体基片上用离子注入法配置扩散了压差、静压和温度三个敏感元件。整个传感器还包含转换器,多路转换器,脉冲调制器,微处理器和数字量输出接口等,并在EPROM中装有该传感器的特性数据,以实现非线性补偿。,83,混合智能传感器组成框图,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号