《167;2.1.1简单随机抽样导学案.doc》由会员分享,可在线阅读,更多相关《167;2.1.1简单随机抽样导学案.doc(2页珍藏版)》请在三一办公上搜索。
1、兰州新区永登县第五中学数学导学案 导学案 2.1.1简单随机抽样班级: 姓名: 得分: 学习目标:1、正确理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、学会用简单随机抽样的方法从总体中抽取样本。3、能够根据样本的具体情况选择适当的方法进行抽样4、体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。重点:简单随机抽样的概念,掌握抽签法及随机数法的步骤难点:简单随机抽样的概念,随机数法的步骤学法提示:学生通过阅读课本P54P57,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。一、复习与回顾:在初中九年级下第30章样本与总体中我们学习了为什么要研究抽样
2、及样本要具有代表性。答: 二、自主学习:假定一个总体含有6个个体,要通过不放回的逐个抽取的方法抽取一个容量为3的样本。如果第一次抽取时每个个体被抽到的概率都为,第二次抽取时余下的每个个体被抽到的概率都为,第三次抽取时余下的每个个体被抽到的概率都为.。这种抽样方法为简单随机抽样简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个_地抽取n个个体作为样本_,如果每次抽取时总体内的各个个体被抽到的机会_,就把这种抽样方法叫做 。【说明】简单随机抽样必须具备下列特点:(1) 简单随机抽样要求被抽取的样本的总体个数N是有限的。(2) 简单随机样本数n小于等于样本总体的个数N。(3) 简单随机样本
3、是从总体中逐个抽取的。(4)简单随机抽样是一种不放回的抽样。(5)简单随机抽样中每个个体被抽取的概率均为思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。解: (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。解: 最常用的简单随机抽样方法有两种_法和_法.抽签法:抽签法就是把总体中的N个个体_,把号码写在号签上,将号签放在一个容器中,_后,每次从中抽取_号签,连续抽取_次,就得到一个容量为n的样本.来源:学【说明】抽签法的一般步骤:(1)将总体的个体编号;(2)制作号签
4、 (3)连续抽签获取样本号码。思考?你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?答: 随机数法就是利用_或_ _进行抽样.随机数表法: 例如,我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取30袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。第一步,先将800袋牛奶编号,可以编为000,001,799第二步,在随机数表中任选一个数,例如选出第8行第7列的数_(下面摘取了附表1的第6行至第10行)。16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 3
5、4 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43
6、 28 第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916799,将它去掉,按照这种方法继续向右读,又取出567,199,507,_,_,_,_,_,_,_,此行到头,转到下一行(也可转到上一行)从最左边继续得到_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,这样我们就得到一个容量为30的样本。【说明】随机数表法的步骤:(1)将总体的个体编号,位数应统一;(2)在随机数表中选择开始数字,读数方向;(3)读数获取样本号码:超范围的舍去;
7、重复的舍去;一行到头转下一行简单随机抽样有_的优点,在_的情况下是行之有效的.二、典型例题例1:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析 简单随机抽样一般采用两种方法:抽签法和随机数表法。解法1:(抽签法)来源:Z,xx,k.Com解法2:(随机数表法)将100件轴编号为00,01,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为来源:学科网ZXXK三、课堂达标练习1、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )A、总体 B
8、、个体是每一个学生C、总体的一个样本 D、样本容量2、在简单抽样中,某一个个体被抽的可能是 ( )A、与第几次抽样有关,第一次抽中的可能性大些B、与第几次抽样无关,每次抽中的可能性相等C、与第几次抽样有关,最后一次抽中的可能性较大D、与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能不一样。3、抽签法中确保样本代表性的关键是 ( )A、制签 B、搅拌均匀 C、逐一抽取 D、抽取不放回4、总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为( ) A、150 B、200 C、100 D、1205、从含有500个个体的总体中一次性抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中每个个体被抽到的概率是( )A、 B、 C、 D、6、从个体总数N=500的总体中,抽取一个容量为n=20的样本,使用随机数表法进行抽选。写出你抽取的样本,并写出抽取过程.(起点在课本105页第16行,第18列) 7、已知总体为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号正确的是( ) A、 1,2,106 B、 0,1,105 C、00,01,105 D、 000,001,105四、问题拓展从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是 。