《圆锥曲线与方程知识点详细.doc》由会员分享,可在线阅读,更多相关《圆锥曲线与方程知识点详细.doc(12页珍藏版)》请在三一办公上搜索。
1、v1.0 可编辑可修改椭圆1、椭圆的第一定义:平面内一个动点到两个定点、的距离之和等于常数 ,这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。.注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形.2、椭圆的标准方程1)当焦点在轴上时,椭圆的标准方程:,其中;2)当焦点在轴上时,椭圆的标准方程:,其中;注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示: 或者 mx2+ny2=1 。3、椭圆:的简单几何性质(1)对称性:对于椭圆标准方程:是以轴、轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的
2、中心。(2)范围:椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。(3)顶点:椭圆的对称轴与椭圆的交点称为椭圆的顶点。椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为,。 线段,分别叫做椭圆的长轴和短轴,,。和分别叫做椭圆的长半轴长和短半轴长。(4)离心率:椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作。因为,所以的取值范围是。越接近1,则就越接近,从而越小,因此椭圆越扁;反之,越接近于0,就越接近0,从而越接近于,这时椭圆就越接近于圆。 当且仅当时,这时两个焦点重合,图形变为圆,方程为。 注意:椭圆的图像中线段的几何特征(如下图):假设已知椭圆方程(),且已知
3、椭圆的准线方程为,试推导出下列式子:(提示:用三角函数假设P点的坐标4、椭圆的另一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。即上图中有5、椭圆 与 的区别和联系标准方程 图形性质焦点,焦距范围,对称性关于轴、轴和原点对称顶点,轴长长轴长=,短轴长=离心率准线方程焦半径,一般而言:椭圆有两条对称轴,它们分别是两焦点的连线及两焦点连线段的中垂线;椭圆都有四个顶点,顶点是曲线与它本身的对称轴的交点;离心率确定了椭圆的形状(扁圆形状),当离心率越接近于0,椭圆越圆;当离心率越接近于1时,椭圆越扁。6.直线与椭圆的位置关系1.将直线方程与椭圆方程联立,消元后得到一元二次方程,然后通
4、过判别式来判断直线和椭圆是否相交、相切或相离。2.消元后得到的一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,通常是写成两根之和与两根之积的形式,这是进一步解题的基础。7.椭圆方程的求解方法 1.要学会运用待定系数法来求椭圆方程,即设法建立或者中的方程组,要善于抓住条件列方程。先定型,再定量,当焦点位置不确定时,应设椭圆的标准方程为()或();或者不必考虑焦点的位置,直接把椭圆的标准方程设为 或者 mx2+ny2=1 (),这样可以避免讨论及繁杂的计算,当已知椭圆上的两点坐标时这种解题更方便。但是需要注意的是m和n(或者)谁代表,谁代表要分清。不要忘记隐含条件和方程,例如:,等等。不同的圆锥
5、曲线有不同的隐含条件和方程,切勿弄混。 2.求解与椭圆几何性质有关的问题时要结合图形分析,即使画不出图形,思考时也要联想图形,注意数形结合法的使用,切勿漏掉一种情况。【典型例题】1、 椭圆的定义例1、已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )A 圆 B 椭圆 C线段 D 直线2、 椭圆的标准方程例2、求满足以下条件的椭圆的标准方程 (1)长轴长为10,短轴长为6; (2)长轴是短轴的2倍,且过点(2,1); (3) 经过点(5,1),(3,2)3、 离心率例3、椭圆的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。若F1PF2
6、=60,则椭圆的离心率为_4、 最值问题例4、椭圆两焦点为F1、F2,点P在椭圆上,则|PF1|PF2|的最大值为_,最小值为_5、 直线和椭圆例10、已知直线l:y=2x+m,椭圆C:,试问当m为何值时: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.双曲线一、知识点讲解(1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图 形xOF1
7、F2PyA2A1yxOF1PB2B1F2顶 点对称轴轴,轴;虚轴为,实轴为焦 点焦 距 离心率(离心率越大,开口越大)渐近线通 径(3)双曲线的渐近线:求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。与双曲线共渐近线的双曲线系方程是;(4)等轴双曲线为,其离心率为1.注意定义中“陷阱问题1:已知,一曲线上的动点到距离之差为6,则双曲线的方程为 2.注意焦点的位置: 问题2:双曲线的渐近线为,则离心率为 【典型例题】1.定义题:1.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的
8、距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的2.如图2所示,为双曲线的左焦点,双曲线上的点与关于轴对称,则的值是( )A9 B16 C18 D27 3. P是双曲线左支上的一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心的横坐标为( )(A)(B)(C)(D)2.求双曲线的标准方程1.已知双曲线C与双曲线=1有公共焦点,且过点(3,2).求双曲线C的方程2.已知双曲线的渐近线方程是,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 3
9、.与渐近线有关的问题1若双曲线的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A. B. C. D.3.焦点为(0,6),且与双曲线有相同的渐近线的双曲线方程是 ( )A B C D4.过点(1,3)且渐近线为的双曲线方程是4.几何1.设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( ) A B C. D5.求弦1.双曲线的一弦中点为(2,1),则此弦所在的直线方程为 ( )A. B. C. D. 抛物线知识点1抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F距离与到定直线l的距离相等;(3)定点不在定直线上知识点2抛物线的标准方程和几何性
10、质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y0x0焦点FFFF离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下焦半径(其中P(x0,y0)|PF|x0|PF|x0|PF|y0|PF|y0【典型例题】例1设P是抛物线y24x上的一个动点(1)求点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值;(2)若B(3,2),求|PB|PF|的最小值变式练习1(1)若点P到直线y1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是_(2)过抛物线y
11、24x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于_变式练习2(1)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|12,P为C的准线上一点,则ABP的面积为( )A18 B24 C36 D48变式练习31.已知直线yk(x2)(k0)与抛物线C:y28x相交于A,B两点,F为C的焦点,若|FA|2|FB|,求k的值【归纳总结】4个结论直线与抛物线相交的四个结论已知抛物线y22px(p0),过其焦点的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:(1)|AB|x1x2p或|AB|(为AB所在直线的倾
12、斜角);(2)x1x2;(3)y1y2p2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p.3个注意点抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点. 注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1到两定点F1,F2的距离之和为定值2a(2a|F1F2|)
13、的点的轨迹1到两定点F1,F2的距离之差的绝对值为定值2a(02a|F1F2|)的点的轨迹2与定点和直线的距离之比为定值e的点的轨迹.(0e1)与定点和直线的距离相等的点的轨迹.方程标准方程(0)(a0,b0)y2=2px参数方程(t为参数)范围axa,byb|x| a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(c,0)F1(c,0), F2(c,0)焦距2c (c=)2c (c=)离心率e=1准线x=x=渐近线y=x焦半径通径2p焦参数P1212