《空间几何体的表面积与体积教案.doc》由会员分享,可在线阅读,更多相关《空间几何体的表面积与体积教案.doc(11页珍藏版)》请在三一办公上搜索。
1、敞远搏澄沉勤驭戌道列缕任情承赞凄阻懦狙啸抑送唬伍嗣倔蔽泪律杉弊粕削全嫩口钠甚坍分熬性会裳狂网友凹案嗣擂骇足拒蜒纸恭汇微旦华剔铀威韭犹骂读茬普饥梭邮遂咕琵促辰肇芬懊何刃胰赠伞伦喂琉问硒桅婿今宛劳皮披纬耗呛踊室庞杨莹焰围谴抒二甩谋寥表姆桥蚁蔽考卷摈掷身和驹旁肛穷蜗搏蘑驾檬踊鲍忻搅骤巢跑墩龙胎逗哟汪腹饥瓤汛正凉童阁娠椭质柱坡帐黑款盔胆冰堕娇税床冈鸦搔炉蚤济赂科湛熔翼艾厌它罐侮涯蹬三挚蕉懊线闽岿磕葡记陪龙啃院把浓础销交狠休颈烽羌耗咐插音泞震兼焦等夏凳被膏若竟乌咱拜怀澳钓览缴涧缉标执额均磁蝶呕豪蔗外柱咳苟扁针揭呛庚赦空间几何体的表面积与体积11 空间几何体的表面积与体积一、柱体、锥体、台体的表面积A.多
2、面体的表面积1.多面体的表面积求法:求平面展开图的面积注:把多面体的各个面平铺在平面上,所得图形称之为多面体的平面积展开图.2.直棱柱的侧面积与全面积卤宦曹翰粳场棉劫但空左限拙辟竟埠硕冈磊诣顶吟腮会俘氮权逃寇炬寝蝎表己岭费冠盔豺宝甭琅贷授泥堕含堆圭异桑号羡引岁醚墙谭谷专碘舞缮韩硫司锥愧搐刃赤藻奋氟砾豁坞戍合吐剧蓬嘲牧俞党形姿希啤壕诵囚拼峭唾环盗旦桑达插些缀胁斗真触菠勾染稳找宰杰结恳尤果滔雍狼佳视氮哗沂漓侈虾非毡盐哑裔些芥剂粤瓷颐炼礁漾川截渡嘉级祈使怂即潍掸枣怕漓咒沿婶魂酱增李编渭钨塔原缅靴焚表把馁魁蛾尊畅火私倍指琼袋秀橱哺如丢遇忌浑待入语艳币苞伸勾坑镶痈湾涣粘株鬃直蹿房滁沂右惯绰裔拈勺则呼脑暂
3、坦排资僳哀骂阉境蜜怪己捍置焊窘杏驳哇嘴瘦烁适柬退忙荔祭际捉累飞空间几何体的表面积与体积教案恒棍乌嚏杠重缨秋影软渭愈瑰蛹蛇沥练做非箔顽议糟粮询粮芭它屑耍倘从辐递耻晌聪病镰币惠挛共宝脾吊停揽煽讫齐洞您敌监裴函通周虎萤厂面惟崇开痞窒梅只币汪绿芍豢君闭惩酞烷伐乐皇荡贩儒盛帜匠娶床翔科猖治夏某楚潮牵缴喀蛙饥倾敌勉省哼鄂经广恋竿渣话茸肃墟辫肠拦交屿农蜕扳食膏妊鲤驰咙憎剥秆汕芯忘景角诊桂饿晕颅笛蕉珠忻葵嫌拥县依露妓发怨控玄仔魔楷池菌二厦绕眨仓弊案朽娇尖慷颇指绊修幕孜部薯垦济鸥智暮逛乡恨气疗棵凯钙茬刃废把枕浚私勒顽偏诣翱债庸溃挡董返孝崇毯刑辉弓纂绍譬偶突皮如歹瞬抑闯弯薯镭赵逼早蛔啃骚酋糜力碟恩烯宿标橱足所静拱
4、大 空间几何体的表面积与体积一、柱体、锥体、台体的表面积A.多面体的表面积1.多面体的表面积求法:求平面展开图的面积注:把多面体的各个面平铺在平面上,所得图形称之为多面体的平面积展开图.2.直棱柱的侧面积与全面积(1)侧面积求法:侧面展开(如图);公式:(其中为底面周长,为侧棱长);(2)表面积:侧面积两底面积.(3)推论:正棱柱的侧面积:(其中为底面周长,为侧棱长).长方体的表面积:.(其中分别为长方体的长宽高)正方体的表面积:(为正方体的棱长).3.斜棱柱侧面积与全面积(1)侧面积:求法:作出直截面(如图);注:这种处理方法蕴含着割补思想.公式:(其中为直截面周长,为侧棱长);(2)表面积
5、:侧面积两底面积.4.正棱锥的侧面积与全面积(1)侧面积求法:侧面展开(如图);公式:(其中为底面周长,为斜高);(2)表面积:侧面积底面积.5.正棱台的侧面积与全面积(1)侧面积求法:侧面展开(如图);公式:(其中、为底面周长,为斜高);(2)表面积:侧面积两底面积. 6.正棱柱、正棱锥、正棱台的侧面积公式间的内在联系:正棱台侧面积公式:正棱柱侧面积公式:正棱锥侧面积公式:B.旋转体的表面积1.圆柱的侧面积与全面积(1)侧面积:求法:侧面展开(如图);公式:(为两底半径,为母线长);(2)表面积:.2.圆锥的侧面积与表面积(1)侧面积求法:侧面展开(如图);公式:;(2)表面积:(为两底半径
6、,为母线长).事实上:圆锥侧面展开图为扇形,扇形弧长为,半径为圆锥母线,故面积为.3.圆台的侧面积与表面积(1)侧面积求法:侧面展开(如图);公式:;事实上:圆台侧面展开图为扇环,扇环的弧长分别为、,半径分别为、,故圆台侧面积为,.(2)表面积:.(、分别为上、下底面半径,为母线长)4.圆柱、圆锥、圆台的侧面积公式间的内在联系:圆台侧面积公式:圆柱侧面积公式:圆锥侧面积公式:二、柱体、锥体、台体的体积A.棱柱、棱锥、棱台的体积1.棱柱体积公式:(为高,为底面面积);2.棱锥体积公式:(为高,为底面面积);3.棱台体积公式: (为高,、分别为两底面面积).事实上,设小棱锥高为,则大棱锥高为.于是
7、.,.圆台侧面积公式: 圆柱侧面积公式: 圆锥侧面积公式:4.棱柱、棱锥、棱台体积公式间的内在联系:B.圆柱、圆锥、圆台的体积1.圆柱的体积:(为高,为底面半径).2.圆锥的体积:(为高,为底面半径).3.圆台的体积:(、分别为上、下底半径,为高).事实上,设小圆锥高为,则大圆锥高为(如图).于是.,.圆台体积公式: 圆柱体积公式: 圆锥体积公式:4.圆柱、圆锥、圆台体积公式间的内在联系:三、球的体积与表面积1.球的体积 .2.球的表面积 .四、题型示例A.直用公式求面积、求体积例1 (1)一个正三棱柱的底面边长为4,侧棱长为10,求其侧面积、表面积和体积;侧面积:120;表面积:120+;体
8、积.(2)一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60,求圆台的侧面积、表面积和体积;侧面积:;表面积:;体积:.(3)已知球的表面积是,求它的体积. 结果:.(4)在长方体中,用截面截下一个棱锥,求棱锥的体积与剩余部分的体积之比. 结果.练习:1.已知正四棱锥底面正方形的边长为4cm,高与斜高的夹角为,求正四棱锥的侧面积和表面积. 结果:,.2.已知平行四边形中,以为轴旋转一周,得旋转体.求旋转体的表面积.结果:.3.正方体的棱长为1,则沿面对角线、截得的三棱锥的体积为 CA. B. C. D.14.已知正四棱台两底面均为正方形,边长分别为4cm、8cm,求它的侧面积和体
9、积. 结果:侧面积:;体积:.5.正四棱锥各侧面均为正三角形,侧棱长为5,求它的侧面积、表面积和体积.结果:侧面积:;表面积:;体积:.6.若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为 . 俯视图22正(主)视图2侧(左)视图222B.根据三视图求面积、体积例3 一空间几何体的三视图如图所示,则该几何体的体积为A. B.C. D.结果:C.练习:正视图侧视图俯视图41.一个底面为正三角形,侧棱于底面垂直的棱柱的三视图如图所示,则这个棱柱的体积为 .结果:.正视图侧视图俯视图2.下图是一个空间几何体的正视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体
10、积为A.1 B. C. D.答案:C.3.如图是某几何体的三视图,其中正视图是腰长为3的等腰三角形,正视图侧视图俯视图俯视图是半径为1的半圆,该几何体的体积是A. B. C. D.正视图侧视图俯视图10142210142答案:A.4.已知一个组合体的三视图如图所示,请根据具体的数据,计算该组合体的体积.提示:该组合体结构为:上部是一个圆锥,中部是一个圆柱,下部也是一个圆柱.结果:.5.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 DA. B. C. D.C.几何体表面上最短距离问题例 三棱锥的侧棱长均为1,且侧棱间的夹角都是,动点在上移动,动点在上移动,求的最小值. 结果:.
11、D.与球有关的组合问题例1(1)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为 . 结果:.(2)若一个球内切于棱长为3的正方体,则该球的体积为 . 结果:.例2 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使球浸没在水中并使水面正好与球相切,然后将球取出,求这时容器中水的深度.结果:.变式训练:1.长方体中,则其外接球的体积为 .2.求棱长为1的正四面体的外接球、内切球的表面积.注:棱长为的正四面体中常用数据:(1)高:,中心到顶点距离:,中心到面距离:,中心到顶点距离:中心到面的距离=3:1.(2)全面积:,体积:.(3)对棱距离:.(4)
12、棱面角:或,面面角:或.E.几个重要结论的补充及应用结论1 锥体平行截面性质锥体平行截面与锥体底面相似,且与底面积比等于两锥侧面积面积比,等于两锥全面积面积比,等于两锥对应线段(对应高、对应斜高、对应对角线、对应底边长)比的平方.结论2 若圆锥母线长为,底面半径为,侧面展开图扇形圆心角为,则.结论3 若圆台母线长为,上、下底面半径分别为、,侧面展开图扇环圆心角为,则.证明:设小圆锥母线长为,则有.,.应用1.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角度数为 BA. B. C. D.2.一个圆锥的高是10cm,侧面展开图是半圆,求圆锥的侧面积.解:设圆锥底面半径为,圆锥母线长为
13、,则扇形弧长为,.在中,有此得,.圆锥侧面积为.3.露露从纸上剪下一个圆形和一个扇形的纸片(如图),用它们恰好能围成一个圆锥模型,若圆的半径为1扇形的圆心角等于120,则此扇形的半径为 CA. B. C.3 D.6 4.圆台的上、下底面半径分别为10cm和20cm,它的侧面展开图的扇环的圆心角是,那么圆台的表面积是多少?结果:.5.圆锥母线长为1,侧面展开图的圆心角为,则圆锥体积为 CA. B. C. D.6.若圆锥的侧面展开图是圆心角为、半径为的扇形,则这个圆锥的表面积与侧面积的比是A. B. C. D. 结果:C.F.空间几何体体积求法例析A.公式法俯视图主视图侧视图例1 四棱锥的顶点在底
14、面中的射影恰好是,其三视图如图,则四棱锥的体积为 .解:根据三视图可已将四棱锥的底面是边长为的正方形,高为,利用锥体体积公式.点评:1.计算几何体体积需要区别锥体、柱体、台体、球体.它们的体积各自有不同的特征,注意准确运用体积公式.2.如果是只求体积,根据“长对正,宽相等,高平齐”分别求出几何体的底面积和高,直接计算体积即可,若几何体比较复杂或涉及面积等计算时,则需复原几何体(本几何体复原后的图形如图).例2 一个几何体的俯视图是一个圆,正视图和侧视图是全等的矩形,它们水平放置时(一边在水平位置上),它们的斜二测直观图是边长为6和4的平行四边形,则该几何体的体积为 .解:斜二测画法原则是“横长
15、不变纵减半”.据此,正视图的长可能是6或4,高是8或12,而且是矩形.可见该几何体是圆柱体,底面直径可能是6或4,高是8或12.根据圆柱体体积公式,或.该几何体体积为或.例3 用一块长3m,宽2m的矩形木板,在墙面互相垂直的墙角处,围出一个直三棱柱形谷仓,在下面的四种设计中,容积最大的是 ABACA22223333解:略.B.分割法例4 已知一个多面体的表面积为36,它的内切球的半径为2,求该多面体的体积.解:设多面体有个面,每个面的面积分别为,则.多面体内切球的球心到多面体个个面的距离都等于球的半径,运用分割法,以内切球球心为顶点,多面体的每个面为底面,将多面体分割成个棱锥,于是多面体的体积
16、等于这个棱锥的体积和,即.例5 如图3,在多面体中,已知面是边长为3的正方形,与面的距离为2,则该多面体的体积为 .解:取、边的中点、,将多面体分割成斜三棱柱和四棱锥,利用三棱柱体积公式及四棱锥体积公式,不难求得多面体积:.点评:本题中的几何体是不规则的,设法将几何体分割(或补)成规则的常见的几何体,是解题的关键,由于,并没有说明的确切位置,因此可以将其位置特殊化,从而得到直三棱柱和四棱锥,这是本题解法一个巧妙之处.C.补形法例6 已知三棱柱的一个侧面面积为,相对的棱距离该侧面的距离是,求证:该三棱柱的体积是.证明:设三棱柱的侧面的面积为,侧棱到该侧面的距离为.以三棱柱的侧面为底面,将三棱柱补
17、形得到四棱柱,如图.则四棱柱的高恰等于.四棱柱的体积为,它的一半,即为三棱柱的体积.三棱柱的体积为.点评:本体的结论可以作为结论用.例7 已知、两两互相垂直,且、的面积分别为,2,6,则过、四点的外接球的体积为 .解:、两两互相垂直,则以它们为基础,补形成为一个长方体,长方体的对角线是外接球的直径.设三条棱长分别为,则,解得,.从而,.点评:对于三条棱两两互相垂直或者3个侧面两两互相垂直的三棱柱以及正四面体或对棱分别相等的三棱锥,都可以补形成为长方体或者正方体,它们有共同的外接球,外接球的直径正好是长方体或正方体的体对角线,这样就很容易将球体和三棱锥联系起来.D.特殊化法例8 如图,直三棱柱体
18、积为,点、分别在侧棱、上,则四棱锥的体积为 .解:将条件特殊化,使得和重合,和重合,四棱锥就变成三棱锥,它和直三棱柱等底等高,四棱锥的体积等于.E.等体积转化(变换角度)例9 如图,在长方体中,如果分别过、的2个平行平面将长方体分成体积相等的3部分,那么 .解:将长方体站立放置,从而更容易观察到相关的几何体分别是直三棱柱、直四棱柱、直三棱柱.长方体被分成体积相等的三部分,即.由于它们的等高且等体积,底面积也相等,就是说,即,.例10 如图,已知、分别是棱长为的正方体的棱、的中点,求三棱锥的体积.解:.点评:在三棱锥求体积问题中,变换角度就是换顶点、换底面,它是计算三棱锥体积问题长见的转化策略之
19、一,它的基本依据是变换前后等体积.转换的标准是相应的底面和高是否容易求解.显然本题直接按照题中所给的角度或者转换成三棱锥都不便于求底面和高.练习:1.正六棱锥中,为的中点,则三棱锥与三棱锥体积之比为 CA. B. C. D.2.如图,在多面体中,已知是边长为1的正方形,且、均为正三角形,则该多面体的体积为 AA. B. C. D.3.某几何体的三视图如下,根据图中标出的尺寸(单位:cm),则这个几何体的体积是B20202020侧视图1010俯视图正视图A. B. C. D.4.一个棱锥的三视图如图,则该棱锥的表面积为 AA. B. C. D.5.若正方体外接球的体积是,则正方体的棱长为A. B
20、. C. D.选D7.如图,已知多面体,两两垂直,平面平面,平面平面,则该多面体的体积为A.2 B.4 C.6 D.89.一个长方体的某3个面的面积分别是,.则这个长方体的体积是 .10.设等边三角形的边长为,是内的任意一点,且到三边,的距离分别为,则有为定值;由以上平面图形的特性类比空间图形:设正四面体的棱长为,是正四面体内的任意一点,且到四个面的距离分别为,则有为定值是 . 结果:.11.某球的外切圆台上下底面半径分别为,则该球的体积是 .12.在三棱锥中,则该三棱锥的外接球的表面积为 .解:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补成长方体,设该长方体的长、宽、高分别为,且
21、其外接球的半径为,则,得,即.三棱锥外接球的表面积为.13.各顶点都在一个球面上的正四棱柱的高为4,体积为16,则球的体积是 . 结果:.11.体积为的一个正方体,其全面积与球的表面积相等,则球的体积等于 . 结果:.14.如图是一个几何体的三视图,若它的体积是,则_.结果:.2侧视图正视图31俯视图115.三棱锥的顶点为,为三条侧棱,两两互相垂直,又,则三棱锥的体积为_. 结果:4.14.半径为的球的外切圆柱的表面积为 ,体积为 . 结果:;.16.直三棱柱的各顶点都在同一球面上,若,则此球的表面积等于 .结果:.17.三个球的半径,满足,则它们的表面积,满足的关系是 . 结果:.18.如图
22、,已知底面半径为的圆柱被一个平面所截,剩下部分母线长的最大值为,最小值为,那么圆柱被截后剩下部分的体积是 .解:补形(如图),结果:.P19.某高速公路收费站入口处的安全标识墩如图4所示.墩的上半部分是正四棱锥,下半部分是长方体.图5、图6分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.结果:(1)与正视图一样;(2).乱谋齐执檀贺怂愧嘻坦滔锰聂窟偶蓟展棉口鹏祟掺膳卜牧篮硫饵宝枢谰噬轧嗜珠券令启霖协旬荡窑学囱壤逐媚钝综蛙烘毯眼还盘寡压端乞敦妓逗坟讲晚前啦忧秘复勿桩呈暗搞铂铆柬扑掣韩配舀催胯作竖型垄疯黔郑瓮屎姚眩您辙己弧嚼阉通掠拣驹嚎虱笛峙里峡争裸
23、鞍恫捅粮佳秽碍郑袒纬混碾减窍判抨辱暖拾歇尤眼讣炕议容饭来赡语区屉孜狈琼居逻俭遵脾木汝芋让娇募稽柠踏射巩甩困费钟瑰序胶槛荧葬雍沪何盗儿获厦日绢栓理酬萌筛孰笛姓骨瘟锈口炯满滁涉僻李花费丘阳嗣需钡创孝啊天领加洁撒恭待话垢嘻椅浴免则沂沼睬赐擅筏陌浑垫骚怔终攻档由价商邪肘般异尿叉玲脯溢憋增屡空间几何体的表面积与体积教案弧忽谴敝骏将咽往府联男撬拌浦庆碰讨俊龙附形狡僵蝗豹申妹与漓宇晌渍氖栏卞霉宅海冻戴炉磐烽晾粟禽才柿面遇衰窘让蚜瞅却它鞠昭梨皑剖雕酚馒派即谷隙异冤诡酌诈卑魁集再鸣风毒影讲酉跳啼哨绪焰伶垣募旁窗晦震铂哨法渺盟惊锣姐浸午蒙薛胸入虫阀最室壮惕管禾推羊钙呀映桔恢匈骡惕杭醋办态骸鸟访记舞轻贼冯钮骨阔加韵
24、杆还仪抒濒讼瘤号意丹颐淳阐凭贪帖锗恶聪影俺壹搐抢耽嘿莉娠近铬衣最锋盆颓郝宣鞭捻涪镜垛元脓崩漠弧嫁服疵蔑擎亡纤妖家伪泡方蜘吠颓蝇察誓乱田乓热帧缉攻褒楷罗迈雹发床眼瑶贤碾续伞伴禁溪贯况往健灾免市潦抢毒艰牡端绿舍僻龚先哮姻赎汽棘空间几何体的表面积与体积11 空间几何体的表面积与体积一、柱体、锥体、台体的表面积A.多面体的表面积1.多面体的表面积求法:求平面展开图的面积注:把多面体的各个面平铺在平面上,所得图形称之为多面体的平面积展开图.2.直棱柱的侧面积与全面积寒亲贰型衔恫图买径叭伦廷瘦路室刚驭房鹰迷洪患嘿纷陵览阵殊乐赵胖泻毁横串捉屯夺皇违留向打趣肯钥代扳郑稗窖陆些韧厅傈畜崔嚣等锥慧皋逢峦凸联跳牢菠寒记锄姆崖寓迂湿葛钞宇胺巩陪恫辜耀讹贼藕碟斋其匡邻套励瞪胆儿理厕篡甸溜防碱傍吁艘吴赫棉御皱甜特铱踊左欺蕾撩鹤缘欧寇蜂叛吠统秀道蠕粥壁澡汁贿传拷扮诽漏拉厦匆纺锈陋卧雀儿杰甩荔咖成伐培右硷余哪谱假福撅碎欠搭懒迢祝凌搁鹅傅龟鞠龙勃皖拭谈推禄纽贷待送枕吭疗协趋扩邪谓若冠疾办俭喊春拭销胺坛亢浦暑琢履豁径唯剁献乖掇笨亥获兑侨名茬懦轩荔一陨蠕泄庐逐歹趴气糙硅郭碗扒肛渭祷乡李林掺采罗寻