【教材考点标注06】一建建设工程经济.doc

上传人:sccc 文档编号:5090445 上传时间:2023-06-03 格式:DOC 页数:321 大小:4.92MB
返回 下载 相关 举报
【教材考点标注06】一建建设工程经济.doc_第1页
第1页 / 共321页
【教材考点标注06】一建建设工程经济.doc_第2页
第2页 / 共321页
【教材考点标注06】一建建设工程经济.doc_第3页
第3页 / 共321页
【教材考点标注06】一建建设工程经济.doc_第4页
第4页 / 共321页
【教材考点标注06】一建建设工程经济.doc_第5页
第5页 / 共321页
点击查看更多>>
资源描述

《【教材考点标注06】一建建设工程经济.doc》由会员分享,可在线阅读,更多相关《【教材考点标注06】一建建设工程经济.doc(321页珍藏版)》请在三一办公上搜索。

1、目 录1Z101000工程经济11Z101010 资金时间价值的计算及应用11Z101020 技术方案经济效果评价151Z101030 技术方案不确定性分析331Z101040 技术方案现金流量表的编制441Z101050 设备更新分析561Z101060 设备租赁与购买方案的比选分析641Z101070 价值工程在工程建设中的应用701Z101080 新技术、新工艺和新材料应用方案的技术经济分析821Z102000工程财务871Z102010 财务会计基础871Z102020 成本与费用941Z102030收 入1101Z102040 利润和所得税费用1171Z102050 企业财务报表12

2、612102060财务分析1371Z102070筹资管理1431Z102080 流动资产财务管理1531Z103000 建设工程估价1591Z103010 建设工程项目总投资1591Z103020 建筑安装工程费用项目的组成与计算17112103030 建设工程定额1841Z103040 建设工程项目设计概算2041Z103050 建设工程项目施工图预算2201Z103060 工程量清单编制2291Z103070 工程量清单计价2361Z103080计量与支付25612103090 国际工程投标报价2981Z101000工程经济工程经济所涉及的内容是工程经济学的基本原理和方法。工程经济学是工程

3、与经济的交叉学科,具体研究工程技术实践活动的经济效果。它在建设工程领域的研究客体是由建设工程生产过程、建设管理过程等组成的一个多维系统,通过所考察系统的预期目标和所拥有的资源条件,分析该系统的现金流量情况,选择合适的技术方案,以获得最佳的经济效果。运用工程经济学的理论和方法可以解决建设工程从决策、设计到施工及运行阶段的许多技术经济问题,比如在施工阶段,要确定施工组织方案、施工进度安排、设备和材料的选择等,如果我们忽略了对技术方案进行工程经济分析,就有可能造成重大的经济损失。通过工程经济的学习,有助于建造师增强经济观念,运用工程经济分析的基本理论和经济效果的评价方法,将建设工程管理建立在更加科学

4、的基础之上。3201Z101010资金时间价值的计算及应用人们无论从事何种经济活动,都必须花费一定的时间。在一定意义上讲,时间是一种最宝贵也是最有限的“资源”。有效地使用资源可以产生价值。所以,对时间因素的研究是工程经济分析的重要内容。要正确评价技术方案的经济效果,就必须研究资金的时间价值。1Z101011利息的计算一、资金时间价值的概念在工程经济计算中,技术方案的经济效益,所消耗的人力、物力和自然资源,最后都是以价值形态,即资金的形式表现出来的。资金运动反映了物化劳动和活劳动的运动过程,而这个过程也是资金随时间运动的过程。因此,在工程经济分析时,不仅要着眼于技术方案资金量的大小(资金收入和支

5、出的多少),而且也要考虑资金发生的时间。资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值。其实质是资金作为生产经营要素,在扩大再生产及其资金流通过程中,资金随时间周转使用的结果。影响资金时间价值的因素很多,其中主要有以下几点:(时速数量收入高)(2005-64)1.资金的使用时间。在单位时间的资金增值率一定的条件下,资金使用时间越长,则资金的时间价值越大;使用时间越短,则资金的时间价值越小。2.资金数量的多少。在其他条件不变的情况下,资金数量越多,资金的时间价值就越多;反之,资金的时间价值则越少。3.资金投入和回收的特

6、点。在总资金一定的情况下,前期投入的资金越多,资金的负效益越大;反之,后期投入的资金越多,资金的负效益越小。而在资金回收额一定的情况下,离现在越近的时间回收的资金越多,资金的时间价值就越多;反之,离现在越远的时间回收的资金越多,资金的时间价值就越少。4.资金周转的速度。资金周转越快,在一定的时间内等量资金的周转次数越多,资金的时间价值越多;反之,资金的时间价值越少。总之,资金的时间价值是客观存在的,生产经营的一项基本原则就是充分利用资金的时间价值并最大限度地获得其时间价值,这就要加速资金周转,早期回收资金,并不断从事利润较高的投资活动;任何资金的闲置,都是损失资金的时间价值。二、利息与利率的概

7、念对于资金时间价值的换算方法与采用复利计算利息的方法完全相同。因为利息就是资金时间价值的一种重要表现形式。而且通常用利息额的多少作为衡量资金时间价值的绝对尺度,用利率作为衡量资金时间价值的相对尺度。(一)利息(2010-1)(2011-1)(2013-1)在借贷过程中,债务人支付给债权人超过原借贷金额的部分就是利息。即: (1Z101011-1)式中I利息;F目前债务人应付(或债权人应收)总金额,即还本付息总额;P原借贷金额,常称为本金。从本质上看利息是由贷款发生利润的一种再配。在工程经济分析中,利息常常被看成是资金的一种机会成本。这是因为如果放弃资金的使用权利,相当于失去收益的机会,也就相当

8、于付出了一定的代价。事实上,投资就是为了在未来获得更大的收益而对目前的资金进行某种安排。很显然,未来的收益应当超过现在的投资,正是这种预期的价值增长才能刺激人们从事投资。因此,在工程经济分析中,利息常常是指占用资金所付的代价或者是放弃使用资金所得的补偿。(二)利率(2007-2)在经济学中,利率的定义是从利息的定义中衍生出来的。也就是说,在理论上先承认了利息,再以利息来解释利率。在实际计算中,正好相反,常根据利率计算利息。利率就是在单位时间内所得利息额与原借贷金额之比,通常用百分数表示。即: (1Z101011-2)式中i利率; 单位时间内所得的利息额。用于表示计算利息的时间单位称为计息周期,

9、计息周期t通常为年、半年、季、月、周或天。【例1Z101011-1】某公司现借得本金1000万元,一年后付息80万元,则年利率为:利率是各国发展国民经济的重要杠杆之一,利率的高低由以下因素决定:(共军先起火)(2015-62)1.利率的高低首先取决于社会平均利润率的高低,并随之变动。在通常情况下,社会平均利润率是利率的最高界限。因为如果利率高于利润率,无利可图就不会去借款。2.在社会平均利润率不变的情况下,利率高低取决于金融市场上借贷资本的供求情况,借贷资本供过于求,利率便下降;反之,求过于供,利率便上升。(2006-13)3.借出资本要承担一定的风险,风险越大,利率也就越高。4.通货膨胀对利

10、息的波动有直接影响,资金贬值往往会使利息无形中成为负值。5.借出资本的期限长短。贷款期限长,不可预见因素多,风险大,利率就高;反之利率就低。(三)利息和利率在工程经济活动中的作用1.利息和利率是以信用方式动员和筹集资金的动力以信用方式筹集资金有一个特点就是自愿性,而自愿性的动力在于利息和利率。比如一个投资者,他首先要考虑的是投资某一项目所得到的利息是否比把这笔资金投入其他项目所得的利息多。如果多,他就可以在这个项目投资;如果所得的利息达不到其他项目的利息水平,他就可能不在这个项目投资。2.利息促进投资者加强经济核算,节约使用资金投资者借款需付利息,增加支出负担,这就促使投资者必须精打细算,把借

11、入资金用到刀刃上,减少借入资金的占用,以少付利息。同时可以使投资者自觉减少多环节占压资金。3.利息和利率是宏观经济管理的重要杠杆国家在不同的时期制定不同的利息政策,对不同地区、不同行业规定不同的利率标准,就会对整个国民经济产生影响。例如对于限制发展的行业,利率规定得高一些;对于提倡发展的行业,利率规定得低一些,从而引导行业和企业的生产经营服从国民经济发展的总方向。同样,占用资金时间短的,收取低息;占用时间长的,收取高息。对产品适销对路、质量好、信誉高的企业,在资金供应上给予低息支持;反之,收取较高利息。4.利息与利率是金融企业经营发展的重要条件金融机构作为企业,必须获取利润。由于金融机构的存放

12、款利率不同,其差额成为金融机构业务收入。此款扣除业务费后就是金融机构的利润,所以利息和利率能刺激金融企业的经营发展。三、利息的计算利息计算有单利和复利之分。当计息周期在一个以上时,就需要考虑“单利”与“复利”的问题。(一)单利所谓单利是指在计算利息时,仅用最初本金来计算,而不计入先前计息周期中所累积增加的利息,即通常所说的“利不生利”的计息方法。其计算式如下:(2005-21) (1Z101011-3)式中代表第t计息周期的利息额;代表本金;计息周期单利利率。而n期末单利本利和F等于本金加上总利息,即:(2012-1)(2014-7) (lZ101011-4)式中代表n个计息周期所付或所收的单

13、利总利息,即: (1Z101011-5)在以单利计息的情况下,总利息与本金、利率以及计息周期数成正比关系。此外,在利用式(1Z101011-4)计算本利和F时,要注意式中n和反映的时期要一致。如为年利率,则n应为计息的年数;若为月利率,n即应为计息的月数。【例1Z101011-2】假如某公司以单利方式借入1000万元,年利率8%,第四年末偿还,则各年利息和本利和如表1Z101011-1所示。单利计算分析表 单位:万元 表1Z101011-1使用期年初款额年末利息年末本利和年末偿还1234100010801160124010008%8080808010801160124013200001320由

14、表1Z101011-1可见,单利的年利息额都仅由本金所产生,其新生利息不再加入本金产生利息,此即“利不生利”。这不符合客观的经济发展规律,没有反映资金随时都在“增值”的概念,也即没有完全反映资金的时间价值。因此,在工程经济分析中单利使用较少,通常只适用于短期投资或短期贷款。(二)复利所谓复利是指在计算某一计息周期的利息时,其先前周期上所累积的利息要计算利息,即“利生利”、“利滚利”的计息方式。其表达式如下:(2006-15) (1Z101011-6)式中计息周期复利利率;表示第(t1)期末复利本利和。而第t期末复利本利和的表达式如下:(2007-3)(2014-32) (1Z101011-7)

15、【例1Z101011-3】数据同例1Z101011-2,按复利计算,则各年利息和本利和如表1Z101011-2所示。复利计算分析表 单位:万元 表1Z101011-2使用期年初款额年末利息年末本利和年末偿还1234100010801166.41259.71210008%8010808%86.41166.48%93.3121259.7128%100.77710801166.41259.7121360.4890001360.489从表1Z101011-2和表1Z101011-1可以看出,同一笔借款,在利率和计息周期均相同的情况下,用复利计算出的利息金额比用单利计算出的利息金额多。如例1Z10101

16、1-3与例12101011-2两者相差40.49(1360.491320)万元。本金越大,利率越高,计息周期越多时,两者差距就越大。复利计息比较符合资金在社会再生产过程中运动的实际状况。因此,在实际中得到了广泛的应用,在工程经济分析中,一般采用复利计算。复利计算有间断复利和连续复利之分。按期(年、半年、季、月、周、日)计算复利的方法称为间断复利(即普通复利);按瞬时计算复利的方法称为连续复利。在实际使用中都采用间断复利,这一方面是出于习惯,另一方面是因为会计通常在年底结算一年的进出款,按年支付税金、保险金和抵押费用,因而采用间断复利考虑问题更适宜。1Z101012资金等值计算及应用资金有时间价

17、值,即使金额相同,因其发生在不同时间,其价值就不相同。反之,不同时点绝对不等的资金在时间价值的作用下却可能具有相等的价值。这些不同时期、不同数额但其“价值等效”的资金称为等值,又叫等效值。资金等值计算公式和复利计算公式的形式是相同的。常用的等值计算公式主要有终值和现值计算公式。一、现金流量图的绘制(一)现金流量的概念(2005-1)(2006-1)在进行工程经济分析时,可把所考察的技术方案视为一个系统。投入的资金、花费的成本和获取的收益,均可看成是以资金形式体现的该系统的资金流出或资金流入。这种在考察技术方案整个期间各时点t上实际发生的资金流出或资金流入称为现金流量,其中流出系统的资金称为现金

18、流出,用符号表示;流入系统的资金称为现金流入,用符号表示;现金流入与现金流出之差称为净现金流量,用符号表示。(二)现金流量图的绘制对于一个技术方案,其每次现金流量的流向(支出或收入)、数额和发生时间都不尽相同,为了正确地进行工程经济分析计算,我们有必要借助现金流量图来进行分析。所谓现金流量图就是一种反映技术方案资金运动状态的图示,即把技术方案的现金流量绘人一时间坐标图中,表示出各现金流入、流出与相应时间的对应关系,如图1Z101012-1所示。运用现金流量图,就可全面、形象、直观地表达技术方案的资金运动状态。现以图1Z101012-1说明现金流量图的作图方法和规则:(2004-2)(2007-

19、61)(2009-55)(2011-78)(2012-2)(2013-58)(2013-65)1.以横轴为时间轴,向右延伸表示时间的延续,轴上每一刻度表示一个时间单位,可取年、半年、季或月等;时间轴上的点称为时点,通常表示的是该时间单位末的时点;0表示时间序列的起点。整个横轴又可看成是我们所考察的“技术方案”。2.相对于时间坐标的垂直箭线代表不同时点的现金流量情况,现金流量的性质(流入或流出)是对特定的人而言的。对投资人而言,在横轴上方的箭线表示现金流入,即表示收益;在横轴下方的箭线表示现金流出,即表示费用。3.在现金流量图中,箭线长短与现金流量数值大小本应成比例。但由于技术方案中各时点现金流

20、量常常差额悬殊而无法成比例绘出,故在现金流量图绘制中,箭线长短只要能适当体现各时点现金流量数值的差异,并在各箭线上方(或下方)注明其现金流量的数值即可。4.箭线与时间轴的交点即为现金流量发生的时点。总之,要正确绘制现金流量图,必须把握好现金流量的三要素,即:现金流量的大小(现金流量数额)、方向(现金流入或现金流出)作用点(现金流量发生的时点)。(2010-63)二、终值和现值计算(2004-15)(2004-17)(2005-10)(2005-22)(2006-14)(2006-16)(2009-57)(2010-2)(2013-2)(2015-19)(一)一次支付现金流量的终值和现值计算1.

21、一次支付现金流量由式(1Z101011-6)和式(1Z101011-7)可看出,如果一周期一周期地计算,周期数很多的话,计算是十分繁琐的,而且在式(1Z101011-7)中没有直接反映出本金P、本利和F、利率i、计息周期数n等要素的关系。所以有必要对式(1Z101011-6)和式(1Z101011-7)根据现金流量支付情形进一步简化。其中一次支付是最基本的现金流量情形。一次支付又称整存整付,是指所分析技术方案的现金流量,无论是流入或是流出,分别在各时点上只发生一次,如图1Z101012-2所示。一次支付情形的复利计算式是复利计算的基本公式。2.终值计算(已知P求F)现有一项资金P,年利率i,按

22、复利计算,n年以后的本利和为多少?根据复利的定义即可求得n年末本利和(即终值)F如表1Z101012-1所示一次支付终值公式推算表 单位:万元 表1Z101012-1计息期期初金额(1)本期利息额(2)期末本利和(l)(2)123n图中i计息期复利率;n计息的期数;P现值(即现在的资金价值或本金),资金发生在(或折算 为)某一特定时间序列起点时的价值;F终值(即n期末的资金价值或本利和),资金发生在(或折 算为)某一特定时间序列终点的价值。由表1Z101012-1可知,一次支付n年末终值(即本利和)F的计算公式为: (1Z101012-1)式中称之为一次支付终值系数,用()表示,故式(1Z10

23、1012-1)又可写成: (1Z101012-2)在()类符号中,括号内斜线上的符号表示所求的未知数,斜线下的符号表示已知数。()表示在已知、和的情况下求解的值。【例1Z101012-1】某公司借款1000万元,年复利率,试问5年末连本带利一次需偿还若干?解:按式(1Z101012-1)计算得:3.现值计算(已知F求P)由式(1Z101012-1)的逆运算即可得出现值P的计算式为: (1Z101012-3)式中称为一次支付现值系数,用符号()表示。式(1Z101012-3)又可写成: (1Z101012-4)一次支付现值系数这个名称描述了它的功能,即未来一笔资金乘上该系数就可求出其现值。计算现

24、值P的过程叫“折现”或“贴现”,其所使用的利率常称为折现率或贴现率。故或()也可叫折现系数或贴现系数。【例1Z101012-2】某公司希望所投资项目5年末有1000万元资金,年复利率,试问现在需一次投入多少?解:由式(1Z101012-3)得:从上面计算可知,现值与终值的概念和计算方法正好相反,因为现值系数与终值系数是互为倒数,即。在一定,相同时,越高,越大;在相同时,越长,越大,如表1Z101012-2所示。在一定,相同时,越高,越小;在相同时,越长,越小,如表1Z101012-3所示。一元现值与终值的关系 表1Z101012-2时间利率1年5年10年20年1%1.01001.05101.1

25、0461.22025%1.05001.27631.62892.65338%1.08001.46932.15894.661010%1.10001.61052.59376.727512%1.12001.76233.10589.646315%1.15002.01144.045616.3365一元终值与现值的关系 表1Z101012-2时间利率1年5年10年20年1%0.990100.591470.905290.819545%0.952380.783530.613910.376898%0.925930.680580.463190.2145510%0.909090.620920.385540.14864

26、12%0.892860.567430.321970.1036715%0.869570.497180.247180.06110从表1Z101012-2可知,按12%的利率,时间20年,现值与终值相差9.6倍。如用终值进行分析,会使人感到评价结论可信度降低;而用现值概念很容易被决策者接受。因此,在工程经济分析中,现值比终值使用更为广泛。在工程经济评价中,由于现值评价常常是选择现在为同一时点,把技术方案预计的不同时期的现金流量折算成现值,并按现值之代数和大小作出决策。因此,在工程经济分析时应当注意以下两点:一是正确选取折现率。折现率是决定现值大小的一个重要因素,必须根据实际情况灵活选用。二是要注意现

27、金流量的分布情况。从收益方面来看,获得的时间越早、数额越多,其现值也越大。因此,应使技术方案早日完成,早日实现生产能力,早获收益,多获收益,才能达到最佳经济效益。从投资方面看,在投资额一定的情况下,投资支出的时间越晚、数额越少,其现值也越小。因此,应合理分配各年投资额,在不影响技术方案正常实施的前提下,尽量减少建设初期投资额,加大建设后期投资比重。(二)等额支付系列现金流量的终值、现值计算1.等额支付系列现金流量在工程经济活动中,多次支付是最常见的支付情形。多次支付是指现金流量在多个时点发生,而不是集中在某一个时点上。如果用表示第期末发生的现金流量大小,可正可负,用逐个折现的方法,可将多次支付

28、现金流量换算成现值,即: (1Z101012-5)或 (1Z101012-6)同理,也可将多次支付现金流量换算成终值:或 (1Z101012-8)在上面式子中,虽然那些系数都以计算得到,但如果较长,较多时,计算也是比较繁琐的。如各年的现金流量有如下特征,则可大大简化上述计算公式。各年的现金流量序列是连续的,且数额相等,即:常数 1,2,3, (1Z101012-9)式中A年金,发生在(或折算为)某一特定时间序列各计息期末(不包括零期)的等额资金序列的 价值。等额支付系列现金流量如图1Z101012-3所示。2.终值计算(已知,求)由式(1Z101012-7)可得出等额支付系列现金流量的终值为:

29、 (1Z101012-10)式中称为等额支付系列终值系数或年金终值系数,用符号()表示。则式(1Z101012-10)又可写成: (1Z101012-11)【例1Z101012-3】某投资人若10年内每年末存10000元,年利率8%,问10年末本利和为多少?解:由式(1Z101012-10)得:3.现值计算(已知A,求P)由式(1Z101012-3)和式(1Z101012-10)可得: (1Z101012-12)式中称为等额支付系列现值系数或年金现值系数,用符号()表示。则式(1Z101012-12)又可写成: (1Z101012-13)【例1Z101012-4】某投资项目,计算期5年,每年年

30、末等额收回100万元,问在利率为10%时,开始须一次投资多少?解:由式(1Z101012-12)得三、等值计算的应用(2004-16)(一)等值计算公式使用注意事项(1)计息期数为时点或时标,本期末即等于下期初。0点就是第一期初,也叫零期;第一期末即等于第二期初;余类推。(2)P是在第一计息期开始时(0期)发生。(3)F发生在考察期期末,即n期末。(4)各期的等额支付A,发生在各期期末。(5)当问题包括P与A时,系列的第一个A与P隔一期。即P发生在系列A的前一期。(6)当问题包括A与F时,系列的最后一个A是与F同时发生。不能把A定在每期期初,因为公式的建立与它是不相符的。(二)等值计算的应用根

31、据上述复利计算公式可知,等值基本公式相互关系如图1Z101012-4所示。【例1Z101012-5】设i10%,现在的1000元等于5年末的多少元?解:画出现金流量图(如图1Z101012-5所示)。根据式(1Z101012-1)可计算出5年末的本利和F为:计算表明,在年利率为10%时,现在的1000元,等值于5年末的1610.5元;或5年末的1610.5元,当i10%时,等值于现在的1000元。如果两个现金流量等值,则对任何时刻的价值必然相等。现用上例求第3年末的价值。按P1000元计算3年末的价值,根据式(1Z101012-1)可计算得:用F1610.5元,计算2年前的价值,根据式(1Z1

32、01012-3)可计算得:若计算第七年末的价值:按P1000元计算第七年末的价值,根据式(1Z101012-1)可计算得:按F1610.5元,计算第七年末的价值(注意:这时n752),根据式(1Z101012-1)可计算得:影响资金等值的因素有三个:资金数额的多少、资金发生的时间长短、利率(或折现率)的大小。其中利率是一个关键因素,一般等值计算中是以同一利率为依据的。(2009-68)在工程经济分析中,等值是一个十分重要的概念,它为评价人员提供了一个计算某一经济活动有效性或者进行技术方案比较、优选的可能性。因为在考虑资金时间价值的情况下,其不同时间发生的收入或支出是不能直接相加减的。而利用等值

33、的概念,则可以把在不同时点发生的资金换算成同一时点的等值资金,然后再进行比较。所以,在工程经济分析中,技术方案比较都是采用等值的概念来进行分析、评价和选定。【例1Z101012-6】某项目投资10000万元,由甲乙双方共同投资。其中:甲方出资60%,乙方出资40%。由于双方未重视各方的出资时间,其出资情况如表1Z101012-4所示。甲乙双方出资情况 单位:万元 表1Z101012-4第1年第2年第3年合计所占比例甲方出资额300020001000600060%乙方出资额100010002000400040%合计40003000300010000100%表1Z101012-4所示的这种资金安排

34、没有考虑资金的时间价值,从绝对额看是符合各方出资比例的。但在考虑资金时间价值后,情况就不同了。设该项目的收益率为i10%,运用等值的概念计算甲乙双方投资的现值如表1Z101012-5所示。甲乙双方出资现值 单位:万元 表1Z101012-5第1年第2年第3年合计所占比例折现系数0.90910.82640.7513甲方出资额2727.31652.8751.35131.461.31%乙方出资额909.1826.41502.63238.138.69%合计3636.42479.22253.98369.5100%由表1Z101012-5可知,这种出资安排有损甲方的利益,必须重新作出安排。一般情况下,应坚

35、持按比例同时出资,特殊情况下,不能按比例同时出资的,应进行资金等值换算。1Z101013名义利率与有效利率的计算在复利计算中,利率周期通常以年为单位,它可以与计息周期相同,也可以不同。当计息周期小于一年时,就出现了名义利率和有效利率的概念。(2012-74)(2014-69)一、名义利率的计算所谓名义利率r是指计息周期利率i乘以一年内的计息周期数m所得的年利率。即:rim (1Z101013-1)若计息周期月利率为1%,则年名义利率为12%。很显然,计算名义利率时忽略了前面各期利息再生的因素,这与单利的计算相同。通常所说的年利率都是名义利率。二、有效利率的计算有效利率是指资金在计息中所发生的实

36、际利率,包括计息周期有效利率和年有效利率两种情况。1.计息周期有效利率的计算计息周期有效利率,即计息周期利率i,其计算由式(1Z101013-1)可得: (1Z101013-2)2.年有效利率的计算(2004-3)(2006-2)(2009-43)(2011-2)(2014-59)(2015-33)若用计息周期利率来计算年有效利率,并将年内的利息再生因素考虑进去,这时所得的年利率称为年有效利率(又称年实际利率)。根据利率的概念即可推导出年有效利率的计算式。已知某年初有资金P,名义利率为r,一年内计息m次(如图1Z101013-1所示),则计息周期利率为ir/m。根据一次支付终值公式(参见公式1

37、Z101012-1)可得该年的本利和F,即:根据利息的定义(参见公式1Z101011-1)可得该年的利息I为:再根据利率的定义(参见公式1Z101011-2)可得该年的实际利率,即年有效利率为: (1Z101013-3)由此可见,年有效利率和名义利率的关系实质上与复利和单利的关系一样。【例1Z101013-1】现设年名义利率r10%,则年、半年、季、月、日的年有效利率如表1Z101013所示。名义利率与有效利率比较表 表1Z101013年名义利率(r)计息期年计息次数(m)计息期利率(ir/m)年有效利率()10%年110%10%半年25%10.25%季42.5%10.38%月120.833%

38、10.46%日3650.0274%10.51%从式(1Z101013-3)和表1Z101013可以看出,每年计息周期m越多,与r相差越大;另一方面,名义利率为10%,按季度计息时,按季度利率2.5%计息与按年利率10.38%计息,二者是等价的。所以,在工程经济分析中,如果各技术方案的计息期不同,就不能简单地使用名义利率来评价,而必须换算成有效利率进行评价,否则会得出不正确的结论。三、计息周期小于(或等于)资金收付周期时的等值计算(2010-3)当计息周期小于(或等于)资金收付周期时,等值的计算方法有以下两种。1.按收付周期实际利率计算。2.按计息周期利率计算,即: (1Z101013-4) (

39、1Z101013-5) (1Z101013-6) (1Z101013-7)【例1Z101013-2】现在存款1000元,年利率10%,半年复利一次。问5年末存款金额为多少?解:现金流量如图1Z101013-2所示。(1)按年实际利率计算(110%/2)2110.25%则F1000(110.25%)5 10001.628891628.89元(2)按计息周期利率计算1000(,5%,10)1000(l5%)1010001.628891628.89元有时上述两法计算结果有很小差异,这是因为一次支付终值系数略去尾数误差造成的,此差异是允许的。但应注意,对等额系列流量,只有计息周期与收付周期一致时才能按

40、计息期利率计算。否则,只能用收付周期实际利率来计算。【例1Z101013-3】每半年内存款1000元,年利率8%,每季复利一次。问五年末存款金额为多少?解:现金流量如图1Z101013-3所示。由于本例计息周期小于收付周期,不能直接采用计息期利率计算,故只能用实际利率来计算。计息期利率ir/m8%/42%半年期实际利率(12%)214.04%则F1000(F/A,4.04%,25)100012.02912029元1Z101020技术方案经济效果评价工程经济分析的任务就是要根据所考察工程的预期目标和所拥有的资源条件,分析该工程的现金流量情况,选择合适的技术方案,以获得最佳的经济效果。这里的技术方

41、案是广义的,既可以是工程建设中各种技术措施和方案(如工程设计、施工工艺、生产方案、设备更新、技术改造、新技术开发、工程材料利用、节能降耗、环境技术、工程安全和防护技术等等措施和方案),也可以是建设相关企业的发展战略方案(如企业发展规划、生产经营、投资、技术发展等关乎企业生存发展的战略方案)。可以说技术方案是工程经济最直接的研究对象,而获得最佳的技术方案经济效果则是工程经济研究的目的。1Z101021经济效果评价的内容所谓经济效果评价就是根据国民经济与社会发展以及行业、地区发展规划的要求,在拟定的技术方案、财务效益与费用估算的基础上,采用科学的分析方法,对技术方案的财务可行性和经济合理性进行分析

42、论证,为选择技术方案提供科学的决策依据。(2014-16)一、经济效果评价的基本内容经济效果评价的内容应根据技术方案的性质、目标、投资者、财务主体以及方案对经济与社会的影响程度等具体情况确定,一般包括方案盈利能力、偿债能力、财务生存能力等评价内容。(一)技术方案的盈利能力技术方案的盈利能力是指分析和测算拟定技术方案计算期的盈利能力和盈利水平。其主要分析指标包括方案财务内部收益率和财务净现值、资本金财务内部收益率、静态投资回收期、总投资收益率和资本金净利润率等,可根据拟定技术方案的特点及经济效果分析的目的和要求等选用。(二)技术方案的偿债能力技术方案的偿债能力是指分析和判断财务主体的偿债能力,其

43、主要指标包括利息备付率、偿债备付率和资产负债率等。(三)技术方案的财务生存能力财务生存能力分析也称资金平衡分析,是根据拟定技术方案的财务计划现金流量表,通过考察拟定技术方案计算期内各年的投资、融资和经营活动所产生的各项现金流入和流出,计算净现金流量和累计盈余资金,分析技术方案是否有足够的净现金流量维持正常运营,以实现财务可持续性。而财务可持续性应首先体现在有足够的经营净现金流量,这是财务可持续的基本条件;其次在整个运营期间,允许个别年份的净现金流量出现负值,但各年累计盈余资金不应出现负值,这是财务生存的必要条件。若出现负值,应进行短期借款,同时分析该短期借款的时间长短和数额大小,进一步判断拟定技术方案的财务生存能力。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号