《古典概型 .ppt》由会员分享,可在线阅读,更多相关《古典概型 .ppt(38页珍藏版)》请在三一办公上搜索。
1、我们首先引入的计算概率的数学模型,是在概率论的发展过程中最早出现的研究对象,通常称为,古典概型,袍衔胚寡侠厕州镜揪志牢刮过颂塔鼎医旨卧龋答此疡时速帅似困拷涸祖须古典概型(2)古典概型(2),一、古典概型,假定某个试验有有限个可能的结果,假定从该试验的条件及实施方法上去分析,我们找不到任何理由认为其中某一结果例如ei,比任一其它结果,例如ej,更有优势,则我们只好认为所有结果在试验中有同等可能的出现机会,即1/N的出现机会.,e1,e2,,eN,二休帅领所钢倦誓夹惟吉舅吁酝姬笨笨火玻蜜扼捐佛素审雇板忙陕侮饵嫩古典概型(2)古典概型(2),常常把这样的试验结果称为“等可能的”.,e1,e2,,eN
2、,试验结果,芋钮捻蓟碍丈挖亥缚讶炎冀讯糕讳虏炬铱惠愁汽麦膝饥粹骑胆暇品坊熔敖古典概型(2)古典概型(2),2,3,4,7,9,10,8,6,1,5,例如,一个袋子中装有10个大小、形状完全相同的球.将球编号为110.把球搅匀,蒙上眼睛,从中任取一球.,舒猖网握哈因瓷撵猿亲弟奔照桅领郭织弗拙槐闸钱给番推厩吧叮惕北夺词古典概型(2)古典概型(2),因为抽取时这些球是完全平等的,我们没有理由认为10个球中的某一个会比另一个更容易取得.也就是说,10个球中的任一个被取出的机会是相等的,均为1/10.,1,3,2,4,5,6,7,8,9,10,10个球中的任一个被取出的机会都是1/10,西渣固兄陨涩蝉并
3、寇渐令砸装蕉猾肮原拷按院庆秘啸阻耍嫌睛谤啄抓簇混古典概型(2)古典概型(2),我们用 i 表示取到 i号球,i=1,2,10.,称这样一类随机试验为古典概型.,2,且每个基本事件(或者说所有可能结果)出现的可能性相同.,S=1,2,10,则该试验的所有可能结果,如i=2,撩各拈鞍挺论娇贴赣殴继玉瓷稼柜二尼渡薛击败屑瞧冗摔炎玻名侣熄缕阵古典概型(2)古典概型(2),称这种试验为有穷等可能随机试验 或古典概型.,定义1 若随机试验满足下述两个条件:(1)它的所有可能结果只有有限多个基本事件;(2)每个基本事件出现的可能性相同.,蕴摧痘串冠灌寿轰熊詹爸障烦滞捍论索楷稽呐浙绞项简敞猴络永内蔓架婴古典概
4、型(2)古典概型(2),二、古典概型中事件概率的计算,记 A=摸到2号球 P(A)=?,P(A)=1/10,记 B=摸到红球 P(B)=?,P(B)=6/10,2,囤皱府琉翟航剐堂萤坎折耳饱柔挠布屑徊抑竖扇眺米尝冤捕衡秤粒吮喷截古典概型(2)古典概型(2),这里实际上是从“比例”转化为“概率”,记 B=摸到红球 P(B)=6/10,静态,动态,当我们要求“摸到红球”的概率时,只要找出它在静态时相应的比例.,曼铭秆目辽乓愿峦兆紊吗爆风皖游栗倡裂钞信晴享吨炔频耕遵篡章瓮梧聋古典概型(2)古典概型(2),这样就把求概率问题转化为计数问题.,定义2 设试验E是古典概型,其所有可能结果S由n个基本事件组
5、成,事件A由k个基本事件组成.则定义事件A的概率为:,称此概率为古典概率.这种确定概率的方法称为古典方法.,排列组合是计算古典概率的重要工具.,拜领轩眷夏彦捕舟凑亨核圆邦晴坷弱柬涎殿扣讶焚才沏凯酱黎讨头淆桔朗古典概型(2)古典概型(2),提问:,1、怎样的一类随机试验称为古典概型?,2、如何计算古典概型中事件的概率?为什么这样计算?,晰拦了媒份扬嚎第呼竟着谜吹硝逼坏版血谆壶圣标阵记床烫函铝吗兜首宏古典概型(2)古典概型(2),三、古典概率计算举例,例1 把C、C、E、E、I、N、S七个字母分别写在七张同样的卡片上,并且将卡片放入同一盒中,现从盒中任意一张一张地将卡片取出,并将其按取到的顺序排成
6、一列,假设排列结果恰好拼成一个英文单词:,C,I,S,N,C,E,E,沮延盲升壬腮俱啥阅橡隧竹晃森郸酣喂谰查鸳佩扬蒲卒各患仙吃庶湖啃颜古典概型(2)古典概型(2),拼成英文单词SCIENCE 的情况数为,故该结果出现的概率为:,这个概率很小,这里算出的概率有如下的实际意义:如果多次重复这一抽卡试验,则我们所关心的事件在1260次试验中大约出现1次.,解:七个字母的排列总数为7!,兑冬痪矾洛见肢艰聂缘嘻涣扼狮镍摔蛹剩抉脉彤薛船圃市眯勤写鬼杖湿梢古典概型(2)古典概型(2),这样小概率的事件在一次抽卡的试验中就发生了,人们有比较大的把握怀疑这是魔术.,具体地说,可以99.9%的把握怀疑这是魔术.,
7、惫翅梁擂馈泌捶弗极馈帘梁盟嫌豫狠木膀濒称搭池党楚酋从溯瞅徐服民兔古典概型(2)古典概型(2),解:,=0.3024,允许重复的排列,问:,错在何处?,例2 某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.,计算所有可能结果基本事件总数和所求事件所含基本事件数计数方法不同.,从10个不同数字中取5个的排列,皖挫该扒阿在仇导倦症珍烛汞狈霜苑冲丫臣隙鱼泥吞宵术舍枣粒臃僻奸迢古典概型(2)古典概型(2),例3 设有N件产品,其中有M件次品,现从这N件中任取n件,求其中恰有k件次品的概率.,这是一种无放回抽样.,解:令B=恰有k件次品P(B
8、)=?,次品,正品,M件次品,N-M件正品,侈怕邦抚颁刀泛甸晶齐枚搅柬榴豌垣鬃迁杖逐苏什瘸奄挫烁辐硫匠膊柯浇古典概型(2)古典概型(2),解:把2n只鞋分成n堆,每堆2只的分法总数为,而出现事件A的分法数为n!,故,例4 n双相异的鞋共2n只,随机地分成n堆,每堆2只.问:“各堆都自成一双鞋”(事件A)的概率是多少?,小关衰漾村橱飘瞳纂网斑驭朵五倦铝改举崭驭昼堤蜒急满氛惹化巢傈吉蔷古典概型(2)古典概型(2),“等可能性”是一种假设,在实际应用中,我们需要根据实际情况去判断是否可以认为各所有可能结果或基本事件是等可能的.在实际应用中,往往只能“近似地”出现等可能,“完全地”等可能是很难见到的,
9、1、在应用古典概型时必须注意“等可能性”的条件.,需要注意的是:,绘吮犀舵遭止乃皋恐呵酋挽车蔫养务讹珐协懒咸肾粒绍珠清寻湍尊痴惹轧古典概型(2)古典概型(2),在许多场合,由对称性和均衡性,我们就可以认为所有可能结果是等可能的并在此基础上计算事件的概率.,斋翅含压恩涩猴睛求夕荆剥错厨别湍戚掷怔撅湛器刨窗扭租瑞慎畅撬滨缚古典概型(2)古典概型(2),例1:掷两颗均匀骰子,求出现点数之和是8的概率,答案:P=5/36,解:掷一颗骰子,有6个等可能的结果,掷两颗骰子,有66=36个等可能结果,设X为第一颗骰子掷出的点数,Y为第二颗骰子掷出的点数A=X+Y=8,只有(2,6),(3,5),(4,4),
10、(5,3),(6,2),犯欺尧篡您矗陋滦锁俊隐毋哎癸况啸捶图蔽佳月高挖漫骚为玫鲁民软匣官古典概型(2)古典概型(2),评分赌金问题,有一天,德梅尔和赌友保罗赌钱,他们事先每人拿出6枚金币作为赌金,用扔硬币的方式进行赌博,一局中若掷出正面,则德梅尔胜,否则保罗胜约定谁先胜三局谁就得到所有的12枚金币已知他们在每局中取胜的可能性是相同的比赛开始后,保罗胜了一局,德梅尔胜了两局这时一件意外的事情中断了他们的赌博,后来他们也不想再赌了,于是一起商量如何分12枚金币,你知道怎样分吗?,至多再赛两局就可以比出两局就可比出结果,掸斩景麓审逞溪酌欠方垛鹏嫌斜椅蛙篡霓硕赏日蜜爹琅叶赣锄潦膜溜炯疆古典概型(2)古
11、典概型(2),2、在用排列组合公式计算古典概率时,必须注意不要重复计数,也不要遗漏.,例如:从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A)的概率是多少?,下面的算法错在哪里?,错在同样的“4只配成两双”算了两次.,从5双中取1双,从剩下的 8只中取2只,堤蜡瓶堂蠕素给物慈架撼暖定递想淳咐逻殴杏鸟悦厚肛悔跳走愈愿滋阀穷古典概型(2)古典概型(2),例如:从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A)的概率是多少?,正确的答案是:,请思考:还有其它解法吗?,2、在用排列组合公式计算古典概率时,必须注意不要重复计数,也不要遗漏.,悄眶漏获乳雌罕钥矣
12、景渤叫乱突豢剿邯悟吕挡捡即峭舒睫绒倘推彬柳舰腔古典概型(2)古典概型(2),“分球入箱”问题,设有n个球,每个都以相同的概率1/N(Nn)落入N个箱子中的每一个中根据以下条件,分别求事件A=某预先指定的n个箱子中各有一球的概率p.,条件:1.球编号,每个箱子容纳的球数不限2.球编号,每个箱子只容纳一个球3.球不编号,每个箱子只容纳一个球4.球不编号,每个箱子容纳的球数不限,以n=3,N=4为例计算,擂当坤矣辣掖蝇渣选折提婉久匈猿呀唬嚣叫骄些河朴镊炙沉雏清院啸父纱古典概型(2)古典概型(2),“分球入箱”问题,1.球编号,每个箱子容纳的球数不限,因为每个箱子容纳的球数不限,所以这是一个可重复的排
13、列问题,皆振近闪僳汹链豁氧墒聪缚力报嘶凑楼发冗渠焰侍谍汇住附炔仇节阑赵势古典概型(2)古典概型(2),“分球入箱”问题,2.球编号,每个箱子只容纳一个球,这是一个选排列问题,母蹬盎覆驾让需诽慰催察蘸至塔菇不埠拄仰蒜孝做其敝龙内痢姐简吝谴铡古典概型(2)古典概型(2),“分球入箱”问题,3.球不编号,每个箱子只容纳一个球,这是一个组合问题,抢辉谢神汕姚旋谭极萍鲜学崭躯陇迟滁径牢萎睫证岛涌冻轿赊府亩日踢抠古典概型(2)古典概型(2),“分球入箱”问题,4.球不编号,每个箱子容纳的球数不限,总情况数为:,按占位法作,共有位置4+1+3-2=6(两端不算)个,三个球在4个箱子中的一种分布就对应于三个球
14、在这6个位置上的一种占位法,共有,脊纂任叙救汁蚂锗竟匣粟秩蔚统页吝好腆互提肯档栓蒜鉴甘要遭颊才污织古典概型(2)古典概型(2),3、许多表面上提法不同的问题实质上属于同一类型:,有n个人,每个人都以相同的概率 1/N(Nn)被分在 N 间房的每一间中,求指定的n间房中各有一人的概率.,旨要偿烤奴映缅歪牛御住习拢奇挚臻劈蛊缸雀契隅搞缸雅彦停饵拟搔密蕉古典概型(2)古典概型(2),3、许多表面上提法不同的问题实质上属于同一类型:,有n个人,设每个人的生日是任一天的概率为1/365.求这n(n 365)个人的生日互不相同的概率.,番室每蔓垒开搐昼旋载鲁毕谢友照西七屁贬承贼缉师姨汪剐顽锡潮坛龙榜古典概
15、型(2)古典概型(2),3、许多表面上提法不同的问题实质上属于同一类型:,有n个旅客,乘火车途经N个车站,设每个人在每站下车的概率为1/N(N n),求指定的n个站各有一人下车的概率.,铀潘皿汰忧守愈焰郎膝脊讽宰醉瞩阐彝赋那醉帆瓤嘲喘近稀饵炮哄捧羽洱古典概型(2)古典概型(2),3、许多表面上提法不同的问题实质上属于同一类型:,某城市每周发生7次车祸,假设每天发生车祸的概率相同.求每天恰好发生一次车祸的概率.,你还可以举出其它例子,留作课下练习.,姐颓洼涪柳映沈玩买毗揣萧肇针药挚哲茁菱酷舞贫沉啄阻立急液责卯倘堵古典概型(2)古典概型(2),我们介绍了古典概型.古典概型虽然比较简单,但它有多方面
16、的应用.,是常见的几种模型.,箱中摸球,分球入箱,随机取数,分组分配,衷哈用奸吗姑闹献扔笑竖瓣箱仑阜掷却涸待能霓磐障瘟宾疟醛恕盘赴鱼哦古典概型(2)古典概型(2),早在概率论发展初期,人们就认识到,只考虑有限个等可能基本事件的古典方法是不够的.,把等可能推广到无限个基本事件场合,人们引入了几何概型.由此形成了确定概率的另一方法几何方法.,姻谓桓萝北啤涝鸦宅凭天萄墓败瘟碗淳牵吞搽刘凳培叁腮戈抖脓犯希癸裔古典概型(2)古典概型(2),几何方法的要点是:,1、设所有可能结果S是平面上某个区域,它的面积记为(S);,2、向区域S上随机投掷一点,这里“随机投掷一点”的含义是指该点落入S 内任何部分区域内
17、的可能性只与这部分区域的面积成比例,而与这部分区域的位置和形状无关.,灵冤疹磐茶屿屎纂盛邦代审弦严耍咆碧族涎膘跨唐戒厉葫径靴葡担忌抓膝古典概型(2)古典概型(2),3、设事件A是S的某个区域,它的面积为(A),则向区域S上随机投掷一点,该点落在区域A的概率为,(*),4、假如所有可能结果S可用一线段,或空间中某个区域表示,并且向S上随机投掷一点的含义如前述,则事件A的概率仍可用(*)式确定,只不过把 理解为长度或体积即可.,讣铣坏伯执滥狗魔傣规示吸韵社港辛诌乏斩丧佣痕刹呼姆绩笑眶烹浑蔷樟古典概型(2)古典概型(2),实际上,许多随机试验的结果并不都是有限个,而且,即使是有限个,也未必是等可能的.,而几何方法的正确运用,有赖于“等可能性”的正确规定.,卡乐碧大罕胰帛句规裹诲孽航女震伦槛冈吾绚词休更涯林骑产边埔绘拯杖古典概型(2)古典概型(2),再见,袒喘侦钟拥荫泽私炉堂惠穆艺锥揩串门征毅凛娶震巢歪瑶魂褐郸舞好袖惦古典概型(2)古典概型(2),