台北市立阳明高级中学OpticsonGraphene.ppt

上传人:sccc 文档编号:5358903 上传时间:2023-06-29 格式:PPT 页数:45 大小:1.52MB
返回 下载 相关 举报
台北市立阳明高级中学OpticsonGraphene.ppt_第1页
第1页 / 共45页
台北市立阳明高级中学OpticsonGraphene.ppt_第2页
第2页 / 共45页
台北市立阳明高级中学OpticsonGraphene.ppt_第3页
第3页 / 共45页
台北市立阳明高级中学OpticsonGraphene.ppt_第4页
第4页 / 共45页
台北市立阳明高级中学OpticsonGraphene.ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

《台北市立阳明高级中学OpticsonGraphene.ppt》由会员分享,可在线阅读,更多相关《台北市立阳明高级中学OpticsonGraphene.ppt(45页珍藏版)》请在三一办公上搜索。

1、Optics on Graphene,Gate-Variable Optical Transitions in GrapheneFeng Wang,Yuanbo Zhang,Chuanshan Tian,Caglar Girit,Alex Zettl,Michael Crommie,and Y.Ron Shen,Science 320,206(2008).,Direct Observation of a Widely Tunable Bandgap in Bilayer GrapheneYuanbo Zhang,Tsung-Ta Tang,Caglar Girit1,Zhao Hao,Mich

2、ael C.Martin,Alex Zettl1,Michael F.Crommie,Y.Ron Shen and Feng Wang(2009),Graphene(A Monolayer of Graphite),2D Hexagonal lattice,Electrically:High mobility at room temperature,Large current carrying capability Mechanically:Large Youngs modulus.Thermally:High thermal conductance.,Properties of Graphe

3、ne,Quantum Hall effect,Barry PhaseBallistic transport,Klein paradoxOthers,Exotic Behaviors,Quantum Hall Effect,Y.Zhang et al,Nature 438,201(2005),Optical Studies of Graphene,Optical microscopy contrast;Raman spectroscopy;Landau level spectroscopy.,Crystalline Structure of Graphite,Graphene,2D Hexago

4、nal lattice,Band Structure of Graphene Monolayer,P.R.Wallace,Phys.Rev.71,622-634(1947),Band Structure of Monolayer Graphere,p-Electron Bands of Graphene Monolayer,Band Structure in Extended BZ,Band Structure near K Points,10 eV,Vertical optical transition,Van Hove Singularity,K,K,Monolayer,Bilayer,B

5、and Structures of Graphene Monolayer and Bilayer near K,EF is adjustable,x,x,Exfoliated Graphene Monolayers and Bilayers,Monolayer,Bilayer,Reflecting microscope images.,K.S.Novoselov et al.,Science 306,666(2004).,20 m,Raman Spectroscopy of Graphene,A.S.Ferrari,et al,PRL 97,187401(2006),(Allowing ID

6、of monolayer and bilayer),Reflection Spectroscopy on Graphene,Experimental Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Infrared Reflection Spectroscopyto Deduce Absorption Spectrum,Differential reflection spectroscopy:Difference between bare substrate and graphene on substrate,A,B,-dR/R

7、(RA-RB)/RA versus w,RA:bare substrate reflectivityRB:substrate+graphene reflectivity,20 m,dR/R=-Reh(w)s(w),h(w)from substrates(w)from graphene:interband transitons free carrier absorption,Re s(w)/w:Absorption spectrum,Spectroscopy on Monolayer Graphene,Monolayer Spectrum,x,C:capacitance,Experimental

8、 Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Vg,Gate Effect on Monolayer Graphene,X,X,X,Small density of states close to Dirac point E=0 Carrier injection by applying gate voltage can lead to large Fermi energy shift.,EF can be shifted by 0.5 eV with Vg 50 v;Shifting threshold of transi

9、tions by 1 eV,If Vg=Vg0+Vmod,then should be a maximum at,Vary Optical Transitions by Gating,Laser beam,Vary gate voltage Vg.,Measure modulated reflectivity due to Vmod at V,(Analogous to dI/dV measurement in transport),Results in Graphene Monolayer,=350 meV,The maximum determines Vg for the given EF

10、.,Mapping Band Structure near K,For different w,the gate voltage Vg determined from maximum is different,following the relation,Slope of the line allows deduction of slope of the band structure(Dirac cone),2D Plot of Monolayer Spectrum,Experiment,Theory,D(dR/R)(dR/R)60V-(dR/R)-50V,Vg=0,Strength of G

11、ate Modulation,Bilayer Graphene(Gate-Tunable Bandgap),Band Structure of Graphene Bilayer,For symmetric layers,D=0For asymmetric layer,D 0,E.McCann,V.I.Falko,PRL 96,086805(2006);,Doubly Gated Bilayer,Asymmetry:D D(Db+Dt)/2 0Carrier injection to shift EF:F dD=(Db-Dt),Sample Preparation,Effective initi

12、al bias due to impurity doping,Transport Measurement,Maximum resistance appears at EF=0,Lowest peak resistance corresponds to Db=Dt=0.,Optical Transitions in Bilayer,I:Direct gap transition(tunable,250 meV)II,IV:Transition between conduction/valence bands(400 meV,dominated by van Hove singularity)II

13、I,V:Transition between conduction and valence bands(400 meV,relatively weak)If dEF=0,then II and IV do not contribute,Bandstructure Change Induced by,Transitions II&IV inactiveTransition I active,x,x,IV,II,Differential Bilayer Spectra(dD=0)(Difference between spectra of D0 and D=0),I,I,Larger bandga

14、p stronger transition I because ot higher density of states,IV,Charge Injection without Change of Bandstructure(D fixed),x,dD=0,dD 0,Transition IV becomes activePeak shifts to lower energy as D increases.Transition III becomes weaker and shifts to higher energy as D increases.,IV,III,Difference Spec

15、tra for Different D between dD=0.15 v/nm and dD=0,Larger D,Bandgap versus D,D(dR/R)(dR/R)60V-(dR/R)-50V,is comparable to dR/R in value,Strength of Gate Modulation,Summary,Grahpene exhibits interesting optical behaviors:.Gate bias can significantly modify optical transitions over a broad spectral ran

16、ge.Single gate bias shifts the Fermi level of monolayer graphene.Spectra provides information on bandstructure,allowing deduction of VF(slope of the Dirac cone in the bandstructure).Double gate bias tunes the bandgap and shifts the Fermi level of bilayer graphene.Widely gate-tunable bandgap of bilayer graphene could be useful in future device applications.Strong gating effects on optical properties of graphene could be useful in infrared optoelectronic devices.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号