《Ch3电路分析基本方法.ppt》由会员分享,可在线阅读,更多相关《Ch3电路分析基本方法.ppt(39页珍藏版)》请在三一办公上搜索。
1、第3章 电路分析的基本方法,引言,一、本章内容及重点:,内容,重点,节点分析法、回路分析法,二、著名科学家推荐,杰克基尔比,美国年轻的电机工程师。1923年11月出生于美国密苏里州杰裴逊城,1947年毕业于美国伊利诺大学物理系,1950年获美国威斯康星大学理学硕士学位。1958年出任美国德克萨斯仪器公司副经理时,接受设计电子微型组件任务。1958年9月12日,他将电阻、电容、晶体管全做到一块硅片上,实现了平面型集成电路相移振荡器,从此发明了集成电路。20世纪90年代计算机CPU芯片上集成500万个晶体管,21世纪一个芯片集成上亿个晶体管。,杰克基尔比集成电路的发明人,三、参考书,邱关源,电路(
2、第四版),北京,高等教育出版社李翰荪,电路分析基础(第三版),北京,高等教育出版社张年风,电路基本理论,北京,清华大学出版社,北京交大出版社,3.1 支路电流法(branch current method),对于有n个节点、b条支路的电路,要求解支路电流,未知量共有b个。只要列出b个独立的电路方程,便可以求解这b个变量。,以各支路电流为未知量列写电路方程分析电路的方法。,1.支路电流法,2.独立方程的列写,(1)从电路的n个结点中任意选择n-1个结点列写KCL方程,(2)选择基本回路列写b-(n-1)个KVL方程,例,1,3,2,有6个支路电流,需列写6个方程。KCL方程:,取网孔为基本回路,
3、沿顺时针方向绕行列KVL写方程:,结合元件特性消去支路电压得:,回路1,回路2,回路3,支路电流法的一般步骤:,(1)标定各支路电流(电压)的参考方向;,(2)选定(n1)个节点,列写其KCL方程;,(3)选定b(n1)个独立回路,列写其KVL方程;(元件特性代入),(4)求解上述方程,得到b个支路电流;,(5)进一步计算支路电压和进行其它分析。,支路电流法的特点:,支路法列写的是 KCL和KVL方程,所以方程列写方便、直观,但方程数较多,宜于在支路数不多的情况下使用。,例1.,节点a:I1I2+I3=0,(1)n1=1个KCL方程:,求各支路电流及电压源各自发出的功率。,解,(2)b(n1)
4、=2个KVL方程:,11I2+7I3=6,U=US,7I111I2=70-6=64,例2.,节点a:I1I2+I3=0,(1)n1=1个KCL方程:,列写支路电流方程.(电路中含有理想电流源),解1.,(2)b(n1)=2个KVL方程:,11I2+7I3=U,7I111I2=70-U,增补方程:I2=6A,+U_,由于I2已知,故只列写两个方程,节点a:I1+I3=6,避开电流源支路取回路:,7I17I3=70,例3.,节点a:I1I2+I3=0,列写支路电流方程.(电路中含有受控源),解,11I2+7I3=5U,7I111I2=70-5U,增补方程:U=7I3,有受控源的电路,方程列写分两步
5、:,(1)先将受控源看作独立源列方程;(2)将控制量用未知量表示,并代入(1)中所列的方程,消去中间变量。,例,求:Rab,解1,连接等电位点,对称线,解2,断开中点。,解3,确定电流分布。,3.2 结点电压法(node voltage method),选结点电压为未知量,则KVL自动满足,就无需列写KVL 方程。各支路电流、电压可视为结点电压的线性组合,求出结点电压后,便可方便地得到各支路电压、电流。,基本思想:,以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。,1.结点电压法,列写的方程,结点电压法列写的是结点上的KCL方程,独立方程数为:,与支路电流法相比,方程数减少
6、b-(n-1)个。,任意选择参考点:其它结点与参考点的电压差即是结点电压(位),方向为从独立结点指向参考结点。,(uA-uB)+uB-uA=0,KVL自动满足,说明,2.方程的列写,(1)选定参考结点,标明其余n-1个独立结点的电压,(2)列KCL方程:,iR出=iS入,i1+i2=iS1+iS2,-i2+i4+i3=0,把支路电流用结点电压表示:,-i3+i5=iS2,整理,得:,令 Gk=1/Rk,k=1,2,3,4,5,上式简记为:,G11un1+G12un2 G13un3=iSn1,G21un1+G22un2 G23un3=iSn2,G31un1+G32un2 G33un3=iSn3,
7、标准形式的结点电压方程,等效电流源,其中,G11=G1+G2 结点1的自电导,等于接在结点1上所有 支路的电导之和。,G22=G2+G3+G4 结点2的自电导,等于接在结点2上所有 支路的电导之和。,G12=G21=-G2 结点1与结点2之间的互电导,等于接在 结点1与结点2之间的所有支路的电导之 和,为负值。,自电导总为正,互电导总为负。,G33=G3+G5 结点3的自电导,等于接在结点3上所有支路的电导之和。,G23=G32=-G3 结点2与结点3之间的互电导,等于接在结 点1与结点2之间的所有支路的电导之和,为负值。,iSn2=-iS2uS/R5 流入结点3的电流源电流的代数和。,iSn
8、1=iS1+iS2 流入结点1的电流源电流的代数和。,流入结点取正号,流出取负号。,由结点电压方程求得各结点电压后即可求得各支路电压,各支路电流可用结点电压表示:,一般情况,其中,Gii 自电导,等于接在结点i上所有支路的电导之和(包括电压源与电阻串联支路)。总为正。,当电路不含受控源时,系数矩阵为对称阵。,iSni 流入结点i的所有电流源电流的代数和(包括由电压源与电阻串联支路等效的电流源)。,Gij=Gji互电导,等于接在结点i与结点j之间的所支路的电导之和,总为负。,结点法的一般步骤:,(1)选定参考结点,标定n-1个独立结点;,(2)对n-1个独立结点,以结点电压为未知量,列写其KCL
9、方程;,(3)求解上述方程,得到n-1个结点电压;,(5)其它分析。,(4)求各支路电流(用结点电压表示);,试列写电路的节点电压方程。,(G1+G2+GS)U1-G1U2GsU3=USGS,-G1U1+(G1+G3+G4)U2-G4U3=0,GSU1-G4U2+(G4+G5+GS)U3=USGS,例,3.无伴电压源支路的处理,(1)以电压源电流为变量,增补结点电压与电压源间的关系,(G1+G2)U1-G1U2=I,-G1U1+(G1+G3+G4)U2-G4U3=0,-G4U2+(G4+G5)U3=I,U1-U3=US,看成电流源,增补方程,(2)选择合适的参考点,U1=US,-G1U1+(G
10、1+G3+G4)U2-G3U3=0,-G2U1-G3U2+(G2+G3+G5)U3=0,4.受控电源支路的处理,对含有受控电源支路的电路,可先把受控源看作独立电源按上述方法列方程,再将控制量用结点电压表示。,先把受控源当作独立 源列方程;,(2)用结点电压表示控制量。,列写电路的结点电压方程。,例,设参考点,把受控源当作独立源列方程;,(2)用结点电压表示控制量。,列写电路的结点电压方程。,例,解,例,列写电路的结点电压方程。,注:与电流源串接的 电阻不参与列方程,增补方程:,U=Un3,例,求U和I。,解1,应用结点法。,解得:,解2,应用回路法。,解得:,3.3 网孔分析法(loop cu
11、rrent method),基本思想,为减少未知量(方程)的个数,假想每个回路中有一个回路电流。各支路电流可用回路电流的线性组合表示。来求得电路的解。,1.回路电流法,以基本回路中的回路电流为未知量列写电路方程分析电路的方法。当取网孔电流为未知量时,称网孔法,独立回路为2。选图示的两个独立回路,支路电流可表示为:,回路电流在独立回路中是闭合的,对每个相关节点均流进一次,流出一次,所以KCL自动满足。因此回路电流法是对独立回路列写KVL方程,方程数为:,列写的方程,与支路电流法相比,方程数减少n-1个。,回路1:R1 il1+R2(il1-il2)-uS1+uS2=0,回路2:R2(il2-il
12、1)+R3 il2-uS2=0,整理得:,(R1+R2)il1-R2il2=uS1-uS2,-R2il1+(R2+R3)il2=uS2,2.方程的列写,R11=R1+R2 回路1的自电阻。等于回路1中所有电阻之和。,观察可以看出如下规律:,R22=R2+R3 回路2的自电阻。等于回路2中所有电阻之和。,自电阻总为正。,R12=R21=R2 回路1、回路2之间的互电阻。,当两个回路电流流过相关支路方向相同时,互电阻取正号;否则为负号。,ul1=uS1-uS2 回路1中所有电压源电压的代数和。,ul2=uS2 回路2中所有电压源电压的代数和。,当电压源电压方向与该回路方向一致时,取负号;反之取正号
13、。,由此得标准形式的方程:,对于具有 l=b-(n-1)个回路的电路,有:,其中:,Rjk:互电阻,+:流过互阻的两个回路电流方向相同,-:流过互阻的两个回路电流方向相反,0:无关,Rkk:自电阻(为正),例1.,用回路电流法求解电流 i.,解1,独立回路有三个,选网孔为独立回路:,(1)不含受控源的线性网络 Rjk=Rkj,系数矩阵为对称阵。(2)当网孔电流均取顺(或逆时 针方向时,Rjk均为负。,表明,解2,只让一个回路电流经过R5支路,特点,(1)减少计算量,(2)互有电阻的识别难度加大,易遗漏互有电阻,回路法的一般步骤:,(1)选定l=b-(n-1)个独立回路,并确定其绕行方向;,(2
14、)对l 个独立回路,以回路电流为未知量,列写其KVL方程;,(3)求解上述方程,得到l 个回路电流;,(5)其它分析。,(4)求各支路电流(用回路电流表示);,3.理想电流源支路的处理,引入电流源电压,增加回路电流和电流源电流的关系方程。,例,电流源看作电压源列方程,增补方程:,选取独立回路,使理想电流源支路仅仅属于一个回路,该回路电流即 IS。,例,为已知电流,实际减少了一方程,与电阻并联的电流源,可做电源等效变换,4.受控电源支路的处理,对含有受控电源支路的电路,可先把受控源看作独立电源按上述方法列方程,再将控制量用回路电流表示。,例,受控电压源看作独立电压源列方程,增补方程:,例,列回路电流方程,解1,选网孔为独立回路,U2,U3,增补方程:,解2,回路2选大回路,增补方程:,例,求电路中电压U,电流I和电压源产生的功率。,解,