《康普顿效应一电磁波的动量和静质量电磁波的速度为.ppt》由会员分享,可在线阅读,更多相关《康普顿效应一电磁波的动量和静质量电磁波的速度为.ppt(20页珍藏版)》请在三一办公上搜索。
1、11.4 康普顿效应一、电磁波的动量和静质量 电磁波的速度为 c,根据相对论速度公式:v=c2 P/E得电磁波的动量为:P=E/c根据相对论能量与动量关系:E=c(mo2c2+P2)1/2得电磁波的静质量为:mo=0结论:一电磁波的能量与动量之间的关系,和一个静质量为零的粒子相同。,二、电磁波与自由电子的作用1、自由电子仅吸收电磁波的情况 设自由电子是静止的,动量守恒定律:0+E/c=Pe(1)能量守恒定律:0+E=EK(2)但一个电子的 EK与 Pe 其之间应有如下关系:EK=c(me2c2+Pe2)1/2-me c2(3)(3)式与(1)、(2)是矛盾的结论:一个自由电子不可能仅吸收电磁波
2、。,学生可能会感到奇怪,为什么在讨论光电效应时,没有提到这个问题。原因:光电效应中考虑的电子是束缚的,而非自由电子,能同时满足能量和动量守恒,且原子或分子因质量远比电子大而只接受很小一部分能量以及很小一部分动量,这部分能量如此之小,通常根本不予考虑。在自由电子的情况下,由于没有其他粒子与电子一起分配能量和动量,所以不可能仅发生吸收而不违背这两个量之一的守恒律。,2、康普顿效应 实验发现当我们分析通过一个有自由电子存在的区域的电磁辐射时,我们观察到,除入射辐射之外,还有不同频率的另一辐射存在。这种新的辐射被解释为自由电子散射的辐射,散射辐射的频率小于入射辐射的频率,因而散射辐射的波长大于入射辐射
3、的波长。这个重要的现象,叫做康普顿效应。,康普顿实验装置示意图,X 射线管,石墨体,X射线谱仪,晶体,石墨的康普顿效应,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,=0,O,(a),(b),(c),(d),相,对,强,度,0.700,0.750,石墨的康普顿效应,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,=0,=45,O,O,(a),(b),(c),(d),相,对,强,度,0.700,0.750,石墨的康普顿效应,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,
4、.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,=0,=45,=90,O,O,O,(a),(b),(c),(d),相,对,强,度,0.700,0.750,石墨的康普顿效应,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,
5、.,.,.,.,.,.,.,.,.,.,.,=0,=45,=90,=135,O,O,O,O,(a),(b),(c),(d),相,对,强,度,0.700,0.750,(1)实验结果 在我国物理学家吴有训与康普顿合作期间,在1926年所作的实验指出:(a)在原子量小的物质中,康普顿散射较强,在原子量大的物质中,康普顿散射较弱;(b)波长的改变随散射角(散射线与入射线之 间接的夹角)而异。当散射角增加时,波长的改变也随之 增加;在同一散射角下,对于所有散射物质,波长的改变都相同。,(2)经典电磁理论的缺陷经典电磁理论对光散射的解释:当电磁波通过物体时,将引起物体内带电粒子的受迫振动。每个振动着的带电
6、粒子将向四周辐射,就成为散射光。从波动观点来看,带电粒子受迫振动的频率等于入射光的频率,所发射的光的频率应与入射光的频率相同。可见,光的波动理论能够解释波长不变的散射而不能解释康普顿效应。,(3)电磁波的粒子说解释 把电磁波视为一个静质量等于零的“粒子”(光子),把电子对电磁波的散射想象为光子和电子之间的碰撞。定性解释:(a)若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光 子质量远小于原子质量,根据碰撞理 论,碰撞前后光子能量几乎不变,波 长不变。,(b)若光子和外层电子相碰撞,光子有一部 分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。(c)因为碰撞
7、中交换的能量和碰撞的角度有 关,所以波长改变和散射角有关。(d)轻原子中的电子一般束缚较弱,重原子 中的电子只有外层电子束缚得较弱,内 部电子是束缚得非常紧的,所以原子量 小的物质,康普顿散射较强,而原子量 大的物质,康普顿散射较弱。,动量守恒:P=P+Pe Pe2=(P-P)2=P2+P2-2P P=(E2+E2-2E E cos)/c2能量守恒:E+mec2=E+c(me2c2+Pe2)1/2 Pe2=(E+mec2-E)2/c2-me2c2=E2+E2+2(E-E)mec2-2EE/c2,康普顿效应定量分析:,1/E-1/E=(1-cos)/mec2 E=h=h c/,E=h=h c/-
8、=(h/mec)(1-cos)-=c(1-cos)式中 c=h/mec=0.0024 nm,称为康普顿波长。上式说明了波长的改变-与散射物质无关,仅决定于散射方向。当散射角增大时,-也将随之增加。根据 c 的测量值,以及 me 和 c,可计算 h 的值,与以前在黑体辐射和光电效应中得到的普朗克常数相同,从而进一步证明普朗克假说的正确性。,例:在康普顿散射中,如果反冲电子的速度为光速的 60,则因散射使电子获得能量是静能的几倍?,解:Ek=mc2-moc2=moc2(1-v2/c2)-1/2-1=Eo(1-0.62)-1/2-1=Eo(1/0.8-1)=0.25 Eo 所以电子获得能量即动能是静
9、能的 0.25 倍。,例11-4:在康普顿散射实验中,入射的 X 射线波长=0.01 nm,如果光的散射角是 90o,求(1)散射线的波长;(2)反冲电子的动能;(3)反冲电子的出射角 以及反冲电子的动量。,解:(1)已知散射角=90o,波长改变量:=-=0.0024(1-cos 90)=0.0024 nm所以散射线波长:=+=0.01+0.0024=0.0124 nm,(2)反冲电子的动能等于入射光子与散射光子能量之差:Ek=h-h=hc(1/-1/)=hc/=3.8510-15J=2.410 4 eV,(3)设散射前:光子动量 P=h/i电子动量 Pe=0 散射后:光子动量 P=h/j电子动量 Pe=m根据动量守恒定律:P+Pe=P+Petg=P/P=/=0.1/0.124=0.8065反冲电子的出射角为=arctg 0.8065=3853,反冲电子的动量大小为:Pe=(P2+P2)1/2=h(1/2+1/2)1/2=6.6310-34 1/(0.110-10)2+1/(0.12410-10)2 1/2=8.5210-23kg m/s,