《剪力墙结构设计》PPT课件.ppt

上传人:小飞机 文档编号:5472135 上传时间:2023-07-10 格式:PPT 页数:90 大小:7.16MB
返回 下载 相关 举报
《剪力墙结构设计》PPT课件.ppt_第1页
第1页 / 共90页
《剪力墙结构设计》PPT课件.ppt_第2页
第2页 / 共90页
《剪力墙结构设计》PPT课件.ppt_第3页
第3页 / 共90页
《剪力墙结构设计》PPT课件.ppt_第4页
第4页 / 共90页
《剪力墙结构设计》PPT课件.ppt_第5页
第5页 / 共90页
点击查看更多>>
资源描述

《《剪力墙结构设计》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《剪力墙结构设计》PPT课件.ppt(90页珍藏版)》请在三一办公上搜索。

1、第四章 剪力墙结构设计,河北科技大学建工学院,主要内容:,主要内容,4.1 剪力墙结构计算假定4.2 剪力墙的受力特点、分类和计算方法4.3 剪力墙结构的内力和侧移计算4.4 剪力墙截面设计和构造要求4.5 连续截面设计和构造要求4.6 剪力墙结构的布置要求,剪力墙结构:是由一定数量的钢筋混凝土竖向纵、横墙体和楼层(板)组合在一起的空间受力体系。为了满足使用要求,剪力墙常开有门窗洞口。,根据洞口的有无、大小、形状和位置等,剪力墙主要可划分为以下几类:,整体墙:,几何判定:(1)剪力墙无洞口;(2)有洞口,墙面洞口面积不大于墙面总面积的16%,且洞口间的净距及洞口至墙边的距离均大于洞口长边尺寸。

2、,受力特点:可视为上端自由、下端固定的竖向悬臂构件。,整体小开口墙:,几何判定:(1)洞口稍大一些,且洞口沿竖向成列布置,(2)洞口面积超过墙面总面积的16%,但洞口对 剪力墙的受力影响仍较小。,受力特点:在水平荷载下,由于洞口的存在,墙肢中已出现局部弯曲,其截面应力可认为由墙体的整体弯曲和局部弯曲二者叠加组成,截面变形仍接近于整体墙。,联肢墙:,几何判定:沿竖向开有一列或多列较大的洞口,可以简化为若干个单肢剪力墙或墙肢与一系列连梁联结起来组成。,受力特点:连梁对墙肢有一定的约束作用,墙肢局部弯矩较大,整个截面正应力已不再呈直线分布。,壁式框架(大开口剪力墙):,几何判定:当剪力墙成列布置的洞

3、口很大,且洞口较宽,墙肢宽度相对较小,连梁的刚度接近或大于墙肢的刚度。,受力特点:与框架结构相类似。,剪力墙结构的计算方法,剪力墙结构的计算假定,剪力墙结构的内力和侧移计算,整体墙和整体小开口墙的计算,双肢墙和多肢墙的连续化计算方法,壁式框架在水平荷载作用下的近似计算,整体墙和整体小开口墙的计算,双肢墙的内力和位移计算 双肢墙由连梁将两墙肢联结在一起,且墙肢的刚度一般比连梁的刚度大较多,相当于柱梁刚度比很大的一种框架,属于高次超静定结构,可采用连梁连续化的分析法。,基本假定1)每一楼层处的连梁简化为沿该楼层均匀连续分布的连杆。2)忽略连梁轴向变形,两墙肢同一标高水平位移相等。3)转角和曲率亦相

4、同。每层连梁的反弯点在梁的跨度中央。4)沿竖向墙肢和连梁的刚度及层高均不变。当有变化时,可取几何平均值。,微分方程的建立1、第一步:根据基本体系在连梁切口处的变形连续条件,建立微分方程:将连续化后的连梁沿反弯点处切开,可得力法求解时的基本体系。切开后的截面上有剪力集度(z)和轴力集度(z),取(z)为多余未知力。根据变形连续条件,切口处沿未知力(z)方向上的相对位移应为零,建立微分方程。,(1)由于墙肢弯曲变形所产生的相对位移:,当墙肢发生剪切变形时,只在墙肢的上、下截面产生相对水平错动,此错动不会使连梁切口处产生相对竖向位移,即由墙肢剪切变形所产生的相对位移为零。,2)墙肢轴向变形所产生的相

5、对位移,基本体系在切口处剪力作用下,自两墙肢底至 z 截面处的轴向变形差为切口所产生的相对位移。,计算截面,z 截面处的轴力在数量上等于(Hz高度范围)内切口处的剪力之和:,3)连梁弯曲和剪切变形所产生的相对位移,由于连梁切口处剪力(z)作用,使连梁产生弯曲和剪切变形,在切口处所产生的相对位移为,(连梁切口处的变形连续条件),2、第二步:引入补充条件,求,3、第三步:微分方程的简化,双肢墙的基本微分方程:,4、第四步:引入约束弯矩表述的微分方程,微分方程的求解,1、二阶常系数非齐次线性微分方程求解,注:推导一个例子,2、根据边界条件、弯矩和曲率的关系计算,注:是否可以采用切口水平相对位移为零,

6、进行求解?,内力计算,如将线约束弯矩m1()、m2()分别施加在两墙肢上,则刚结连杆可变换成铰结连杆(此处忽略了()对墙肢轴力的影响)。铰结连杆只能保证两墙肢位移相等并传递轴力,即两墙肢独立工作,可按独立悬臂梁分析;其整体工作通过约束弯矩考虑。,1、连梁内力,2、墙肢内力,位移和等效刚度,1、位移(考虑墙肢弯曲变形和剪切变形的影响),2、等效刚度,双肢墙内力和位移分布特点:,双肢墙内力和位移分布具有下述特点:,多肢墙的内力和位移计算,多肢墙分析方法的基本假定和基本体系的取法均与双肢墙类似;其微分方程表达式与双肢墙相同,其解与双肢墙的表达式完全一样,只是式中有关参数应按多肢墙计算。,微分方程的建

7、立和求解,计算步骤:1)m 排连梁,m+1 肢墙;2)未知量:各列连梁的中点切口处的剪力(或约束弯矩)3)协调方程:各组连梁的中点切口处的相对位移为零;4)建立 m 组协调方程,相叠加后可建立与双肢墙完全相同的微分方程,其解与双肢墙的表达式完全一样,只是式中有关参数应按多肢墙计算;5)连梁约束弯矩的分配:连梁刚度大,分配的约束弯矩大,反之,减小;6)考虑水平位置的影响,靠近墙中部的连梁剪应较大。,注:多肢墙的计算参数,注:多肢墙的约束弯矩分配系数,约束弯矩分配系数,1、约束弯矩分配系数,2、影响因素,2)多肢墙的整体工作系数,1)各列连梁的刚度系数,3)连梁的位置,3、分配系数的计算,内力计算

8、,位移和等效刚度,壁式框架的内力和位移计算 由于墙肢和连梁的截面高度较大,节点区也较大,故计算时应将节点视为墙肢和连梁的刚域,按带刚域的框架(即壁式框架)进行分析。,计算简图,带刚域杆件的等效刚度 壁式框架与一般框架的区别:1)梁柱杆端均有刚域,从而使杆件的刚度增大;2)梁柱截面高度较大,需考虑杆件剪切变形的影响。,1、无刚域杆件且不考虑剪切变形的转动刚度 转动刚度:当两端均产生单位转角=1 时,所需的杆端弯矩。,2、无刚域杆件但考虑剪切变形的刚度 转动刚度:当两端均产生单位转角=1 时,所需的杆端弯矩。,3、带刚域杆件且考虑剪切变形的刚度 转动刚度:带刚域杆件,当两端均产生单位转角=1 时所

9、需的 杆端弯矩。,由结构力学可知,当AB杆件两端发生转角1+时,考虑杆件剪切变形后的杆端弯矩为,杆端的约束弯矩,4、带刚域杆件的等效刚度 为简化计算,可将带刚域杆件用一个具有相同长度 L的等截面受弯构件来代替,如图 6.7.2(d)所 示,使两者具有相同的转动刚度,即,内力和位移计算 将带刚域杆件转换为具有等效刚度的等截面杆件后,可采用D值法进行壁式框架的内力和位移计算。,1、带刚域柱的侧移刚度D值,2、带刚域柱反弯点高度比的修正,注:壁式框架在水平荷载作用下内力和位移计算的步 骤与一般框架结构完全相同,详见第 3章。,带刚域柱(图 6.7.3)应考虑柱下端刚域长度 ah,其反弯点高度比应按下式确定:,竖向荷载作用下的内力计算,剪力墙的结构布置,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号