《《抽样量化》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《抽样量化》PPT课件.ppt(90页珍藏版)》请在三一办公上搜索。
1、1,通信原理,2.6 语音信号数字化,2,引言数字化3步骤:抽样、量化和编码,3,2.6.1 模拟信号的抽样、低通模拟信号的抽样定理抽样定理:设一个连续模拟信号m(t)中的最高频率 fH,则以间隔时间为T 1/2fH的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定。【证】设有一个最高频率小于fH的信号m(t)。将这个信号和周期性单位冲激脉冲T(t)相乘,其重复周期为T,重复频率为fs=1/T。乘积就是抽样信号,它是一系列间隔为T 秒的强度不等的冲激脉冲。这些冲激脉冲的强度等于相应时刻上信号的抽样值。现用ms(t)=m(kT)表示此抽样信号序列。故有用波形图示出如下:,4,5,令M(
2、f)、(f)和Ms(f)分别表示m(t)、T(t)和ms(t)的频谱。按照频率卷积定理,m(t)T(t)的傅里叶变换等于M(f)和(f)的卷积。因此,ms(t)的傅里叶变换Ms(f)可以写为:而(f)是周期性单位冲激脉冲的频谱,它可以求出等于:式中,将上式代入 Ms(f)的卷积式,得到,6,上式中的卷积,可以利用卷积公式:进行计算,得到上式表明,由于M(f-nfs)是信号频谱M(f)在频率轴上平移了nfs的结果,所以抽样信号的频谱Ms(f)是无数间隔频率为fs的原信号频谱M(f)相叠加而成。用频谱图示出如下:,7,f,8,因为已经假设信号m(t)的最高频率小于fH,所以若频率间隔fs 2fH,
3、则Ms(f)中包含的每个原信号频谱M(f)之间互不重叠,如上图所示。这样就能够从Ms(f)中用一个低通滤波器分离出信号m(t)的频谱M(f),也就是能从抽样信号中恢复原信号。这里,恢复原信号的条件是:即抽样频率fs应不小于fH的两倍。这一最低抽样速率2fH称为奈奎斯特速率。与此相应的最小抽样时间间隔称为奈奎斯特间隔。,9,恢复原信号的方法:从上图可以看出,当fs 2fH时,用一个截止频率为fH的理想低通滤波器就能够从抽样信号中分离出原信号。从时域中看,当用抽样脉冲序列冲激此理想低通滤波器时,滤波器的输出就是一系列冲激响应之和,如下图所示。这些冲激响应之和就构成了原信号。理想滤波器是不能实现的。
4、实用滤波器的截止边缘不可能做到如此陡峭。所以,实用的抽样频率fs必须比2fH 大一些。例如,典型电话信号的最高频率通常限制在3400 Hz,而抽样频率通常采用8000 Hz。,t,10,2.6.1.2 带通模拟信号的抽样定理设带通模拟信号的频带限制在fL和fH之间,如图所示。即其频谱最低频率大于fL,最高频率小于fH,信号带宽B=fH fL。可以证明,此带通模拟信号所需最小抽样频率fs等于式中,B 信号带宽;n 商(fH/B)的整数部分,n=1,2,;k 商(fH/B)的小数部分,0 k 1。按照上式画出的fs和fL关系曲线示于下图:,11,由于原信号频谱的最低频率fL和最高频率fH之差永远等
5、于信号带宽B,所以当0 fL B时,有B fH 2B。这时n=1,而上式变成了fs=2B(1+k)。故当k从0变到1时,fs从2B变到4B,即图中左边第一段曲线。当fLB时,fH2B,这时n=2。故当k0时,上式变成了fs=2B,即fs从4B跳回2B。当B fL 2B时,有2B fH 3B。这时,n=2,上式变成了fs=2B(1+k/2),故若k从0变到1,则fs从2B变到3B,即图中左边第二段曲线。当fL2B时,fH3B,这时n=3。当k0时,上式又变成了fs=2B,即fs从3B又跳回2B。依此类推。,12,由上图可见,当fL=0时,fs 2B,就是低通模拟信号的抽样情况;当fL很大时,fs
6、趋近于2B。fL很大意味着这个信号是一个窄带信号。许多无线电信号,例如在无线电接收机的高频和中频系统中的信号,都是这种窄带信号。所以对于这种信号抽样,无论fH是否为B的整数倍,在理论上,都可以近似地将fs取为略大于2B。图中的曲线表示要求的最小抽样频率fs,但是这并不意味着用任何大于该值的频率抽样都能保证频谱不混叠。,13,2.6.1.3 模拟脉冲调制模拟脉冲调制的种类周期性脉冲序列有4个参量:脉冲重复周期、脉冲振幅、脉冲宽度和脉冲相位(位置)。其中脉冲重复周期(抽样周期)一般由抽样定理决定,故只有其他3个参量可以受调制。3种脉冲调制:脉冲振幅调制(PAM)脉冲宽度调制(PDM)脉冲位置调制(
7、PPM)仍然是模拟调制,因为其代表信息的参量仍然是可以连续变化的。,14,模拟脉冲调制波形,(a)模拟基带信号(b)PAM信号(c)PDM信号(d)PPM信号,15,PAM调制PAM调制信号的频谱设:基带模拟信号的波形为m(t),其频谱为M(f);用这个信号对一个脉冲载波s(t)调幅,s(t)的周期为T,其频谱为S(f);脉冲宽度为,幅度为A;并设抽样信号ms(t)是m(t)和s(t)的乘积。则抽样信号ms(t)的频谱就是两者频谱的卷积:式中 sinc(nfH)=sin(nfH)/(nfH),16,PAM调制过程的波形和频谱图,17,由上图看出,若s(t)的周期T(1/2fH),或其重复频率f
8、s 2fH,则采用一个截止频率为fH的低通滤波器仍可以分离出原模拟信号。自然抽样和平顶抽样在上述PAM调制中,得到的已调信号ms(t)的脉冲顶部和原模拟信号波形相同。这种PAM常称为自然抽样。在实际应用中,则常用“抽样保持电路”产生PAM信号。这种电路的原理方框图如右:,18,平顶抽样输出波形平顶抽样输出频谱设保持电路的传输函数为H(f),则其输出信号的频谱MH(f)为:上式中的Ms(f)用 代入,得到,19,比较上面的MH(f)表示式和Ms(f)表示式可见,其区别在于和式中的每一项都被H(f)加权。因此,不能用低通滤波器恢复(解调)原始模拟信号了。但是从原理上看,若在低通滤波器之前加一个传输
9、函数为1/H(f)的修正滤波器,就能无失真地恢复原模拟信号了。,20,2.6.2 抽样信号的量化2.6.2.1 量化原理设模拟信号的抽样值为m(kT),其中T是抽样周期,k是整数。此抽样值仍然是一个取值连续的变量。若仅用N个不同的二进制数字码元来代表此抽样值的大小,则N个不同的二进制码元只能代表M=2N个不同的抽样值。因此,必须将抽样值的范围划分成M个区间,每个区间用一个电平表示。这样,共有M个离散电平,它们称为量化电平。用这M个量化电平表示连续抽样值的方法称为量化。,21,量化过程图M个抽样值区间是等间隔划分的,称为均匀量化。M个抽样值区间也可以不均匀划分,称为非均匀量化。,22,量化一般公
10、式设:m(kT)表示模拟信号抽样值,mq(kT)表示量化后的量化信号值,q1,q2,qi,q6是量化后信号的6个可能输出电平,m1,m2,mi,m5为量化区间的端点。则可以写出一般公式:按照上式作变换,就把模拟抽样信号m(kT)变换成了量化后的离散抽样信号,即量化信号。,23,量化器在原理上,量化过程可以认为是在一个量化器中完成的。量化器的输入信号为m(kT),输出信号为mq(kT),如下图所示。在实际中,量化过程常是和后续的编码过程结合在一起完成的,不一定存在独立的量化器。,24,2.6.2.2 均匀量化均匀量化的表示式设模拟抽样信号的取值范围在a和b之间,量化电平数为M,则在均匀量化时的量
11、化间隔为且量化区间的端点为若量化输出电平qi取为量化间隔的中点,则显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。这个误差常称为量化噪声,并用信号功率与量化噪声之比衡量其对信号影响的大小。,i=0,1,M,25,均匀量化的平均信号量噪比在均匀量化时,量化噪声功率的平均值Nq可以用下式表示式中,mk为模拟信号的抽样值,即m(kT);mq为量化信号值,即mq(kT);f(mk)为信号抽样值mk的概率密度;E表示求统计平均值;M为量化电平数;,26,信号mk的平均功率可以表示为 若已知信号mk的功率密度函数,则由上两式可以计算出平均信号量噪比。,27,【例】设一个均匀量化器的量
12、化电平数为M,其输入信号抽样值在区间-a,a内具有均匀的概率密度。试求该量化器的平均信号量噪比。【解】因为所以有,28,另外,由于此信号具有均匀的概率密度,故信号功率等于所以,平均信号量噪比为或写成由上式可以看出,量化器的平均输出信号量噪比随量化电平数M的增大而提高。,dB,29,2.6.2.3 非均匀量化 非均匀量化的目的:在实际应用中,对于给定的量化器,量化电平数M和量化间隔v都是确定的,量化噪声Nq也是确定的。但是,信号的强度可能随时间变化(例如,语音信号)。当信号小时,信号量噪比也小。所以,这种均匀量化器对于小输入信号很不利。为了克服这个缺点,改善小信号时的信号量噪比,在实际应用中常采
13、用非均匀量化。,30,非均匀量化原理在非均匀量化时,量化间隔随信号抽样值的不同而变化。信号抽样值小时,量化间隔v也小;信号抽样值大时,量化间隔v也变大。实际中,非均匀量化的实现方法通常是在进行量化之前,先将信号抽样值压缩,再进行均匀量化。这里的压缩是用一个非线性电路将输入电压x变换成输出电压y:y=f(x)如右图所示:图中纵坐标y 是均匀刻度的,横坐标x 是非均匀刻度的。所以输入电压x越小,量化间隔也就越小。也就是说,小信号的量化误差也小。,31,非均匀量化的数学分析当量化区间划分很多时,在每一量化区间内压缩特性曲线可以近似看作为一段直线。因此,这段直线的斜率可以写为:并有设此压缩器的输入和输
14、出电压范围都限制在0和1之间,即作归一化,且纵坐标y 在0和1之间均匀划分成N个量化区间,则每个量化区间的间隔应该等于将其代入上式,得到,32,为了对不同的信号强度保持信号量噪比恒定,当输入电压x减小时,应当使量化间隔x 按比例地减小,即要求x x因此上式可以写成或式中,k 比例常数。上式是一个线性微分方程,其解为:,33,为了求出常数c,将边界条件(当x=1时,y=1),代入上式,得到k+c=0故求出c=-k将c 的值代入上式,得到即要求y f(x)具有如下形式:由上式看出,为了对不同的信号强度保持信号量噪比恒定,在理论上要求压缩特性具有对数特性。但是,该式不符合因果律,不能物理实现,因为当
15、输入x 0时,输出y-,其曲线和上图中的曲线不同。所以,在实用中这个理想压缩特性的具体形式,按照不同情况,还要作适当修正,使当x0时,y0。,34,关于电话信号的压缩特性,国际电信联盟(ITU)制定了两种建议,即A压缩律和压缩律,以及相应的近似算法 13折线法和15折线法。我国大陆、欧洲各国以及国际间互连时采用A律及相应的13折线法,北美、日本和韩国等少数国家和地区采用律及15折线法。下面将分别讨论这两种压缩律及其近似实现方法。,35,A压缩律A压缩律是指符合下式的对数压缩规律:式中,x 压缩器归一化输入电压;y 压缩器归一化输出电压;A 常数,它决定压缩程度。A 律是从前式修正而来的。它由两
16、个表示式组成。第一个表示式中的y和x成正比,是一条直线方程;第二个表示式中的y和x是对数关系,类似理论上为保持信号量噪比恒定所需的理想特性的关系。,36,A律的导出由式画出的曲线示于下图中。为了使此曲线通过原点,修正的办法是通过原点对此曲线作切线ob,用直线段ob代替原曲线段,就得到A律。此切点b的坐标(x1,y1)为或(1/A,Ax1/(1+lnA))A律是物理可实现的。其中的常数A不同,则压缩曲线的形状不同,这将特别影响小电压时的信号量噪比的大小。在实用中,选择A等于87.6。,37,13折线压缩特性 A律的近似 A律表示式是一条平滑曲线,用电子线路很难准确地实现。这种特性很容易用数字电路
17、来近似实现。13折线特性就是近似于A律的特性。在下图中示出了这种特性曲线:,38,图中横坐标x在0至1区间中分为不均匀的8段。1/2至1间的线段称为第8段;1/4至1/2间的线段称为第7段;1/8至1/4间的线段称为第6段;依此类推,直到0至1/128间的线段称为第1段。图中纵坐标y 则均匀地划分作8段。将与这8段相应的座标点(x,y)相连,就得到了一条折线。由图可见,除第1和2段外,其他各段折线的斜率都不相同。在下表中列出了这些斜率:,39,因为语音信号为交流信号,所以,上述的压缩特性只是实用的压缩特性曲线的一半。在第3象限还有对原点奇对称的另一半曲线,如下图所示:在此图中,第1象限中的第1
18、和第2段折线斜率相同,所以构成一条直线。同样,在第3象限中的第1和第2段折线斜率也相同,并且和第1象限中的斜率相同。所以,这4段折线构成了一条直线。因此,共有13段折线,故称13折线压缩特性。,40,13折线特性和A律特性之间的误差为了方便起见,仅在折线的各转折点和端点上比较这两条曲线的座标值。各转折点的纵坐标y值是已知的,即分别为0,1/8,2/8,3/8,1。对于A律压缩曲线,当采用的A值等于87.6时,其切点的横坐标x1等于:将此x1值代入y1的表示式,就可以求出此切点的纵坐标y1:这表明,A律曲线的直线段在座标原点和此切点之间,即(0,0)和(0.0114,0.183)之间。所以,此直
19、线的方程可以写为:,41,13折线的第1个转折点纵坐标y=1/8=0.125,它小于y1,故此点位于A律的直线段,按上式即可求出相应的x值为1/128。当y 0.183时,应按A律对数曲线段的公式计算x值。此时,由下式可以推出x的表示式:按照上式可以求出在此曲线段中对应各转折点纵坐标y的横坐标值。当用A=87.6代入上式时,计算结果见下表,42,从表中看出,13折线法和A=87.6时的A律压缩法十分接近。,43,在下图中给出了15折线的图形。,44,均匀量化和均匀量化比较 若用13折线法中的(第一和第二段)最小量化间隔作为均匀量化时的量化间隔,则13折线法中第一至第八段包含的均匀量化间隔数分别
20、为16、16、32、64、128、256、512、1024,共有2048个均匀量化间隔,而非均匀量化时只有128个量化间隔。因此,在保证小信号的量化间隔相等的条件下,均匀量化需要11比特编码,而非均匀量化只要7比特就够了。,45,脉冲编码调制脉冲编码调制(PCM)的基本原理把从模拟信号抽样、量化,直到变换成为二进制符号的基本过程,称为脉冲编码调制,简称脉码调制。例:在下图中,模拟信号的抽样值为3.15,3.96,5.00,6.38,6.80和6.42。若按照“四舍五入”的原则量化为整数值,则抽样值量化后变为3,4,5,6,7和6。在按照二进制数编码后,量化值(quantized value)就
21、变成二进制符号:011、100、101、110、111和110。,46,例:在下图中,模拟信号的抽样值为3.15,3.96,5.00,6.38,6.80和6.42。若按照“四舍五入”的原则量化为整数值,则抽样值量化后变为3,4,5,6,7和6。在按照二进制数编码后,量化值就变成二进制符号:011、100、101、110、111和110。,47,PCM系统的原理方框图,48,2.6.3.2 自然二进制码和折叠二进制码在上表中给出的是自然二进制码。电话信号还常用另外一种编码 折叠二进制码。现以4位码为例,列于下表中:,49,折叠码的优点因为电话信号是交流信号,故在此表中将16个双极性量化值分成两部
22、分。第0至第7个量化值对应于负极性电压;第8至第15个量化值对应于正极性电压。显然,对于自然二进制码,这两部分之间没有什么对应联系。但是,对于折叠二进制码,除了其最高位符号相反外,其上下两部分还呈现映像关系,或称折叠关系。这种码用最高位表示电压的极性正负,而用其他位来表示电压的绝对值。这就是说,在用最高位表示极性后,双极性电压可以采用单极性编码方法处理,从而使编码电路和编码过程大为简化。,50,码位排列方法在13折线法中采用的折叠码有8位。其中第一位c1表示量化值的极性正负。后面的7位分为段落码和段内码两部分,用于表示量化值的绝对值。其中第2至4位(c2 c3 c4)是段落码,共计3位,可以表
23、示8种斜率的段落;其他4位(c5 c8)为段内码,可以表示每一段落内的16种量化电平。段内码代表的16个量化电平是均匀划分的。所以,这7位码总共能表示27 128种量化值。在下面的表中给出了段落码和段内码的编码规则。,51,段落码编码规则,52,段内码编码规则:,53,在上述编码方法中,虽然段内码是按量化间隔均匀编码的,但是因为各个段落的斜率不等,长度不等,故不同段落的量化间隔是不同的。其中第1和2段最短,斜率最大,其横坐标x的归一化动态范围只有1/128。再将其等分为16小段后,每一小段的动态范围只有(1/128)(1/16)=1/2048。这就是最小量化间隔,后面将此最小量化间隔(1/20
24、48)称为1个量化单位。第8段最长,其横坐标x的动态范围为1/2。将其16等分后,每段长度为1/32。假若采用均匀量化而仍希望对于小电压保持有同样的动态范围1/2048,则需要用11位的码组才行。现在采用非均匀量化,只需要7位就够了。典型电话信号的抽样频率是8000 Hz。故在采用这类非均匀量化编码器时,典型的数字电话传输比特率为64 kb/s。,54,【例】设输入电话信号抽样值的归一化动态范围在-1至+1之间,将此动态范围划分为4096个量化单位,即将1/2048作为1个量化单位。当输入抽样值为+1270个量化单位时,试用将其按照13折线A律特性编码。【解】设编出的8位码组用c1 c2 c3
25、 c4 c5 c6 c7 c8表示,则:1)确定极性码c1:因为输入抽样值+1270为正极性,所以c1=1。2)确定段落码c2 c3 c4:由段落码编码规则表可见,c2值决定于信号抽样值大于还是小于128,即此时的权值电流Iw128。现在输入抽样值等于1270,故c21。在确定c21后,c3决定于信号抽样值大于还是小于512,即此时的权值电流Iw512。因此判定c31。,55,同理,在c2 c311的条件下,决定c4的权值电流Iw1024。将其和抽样值1270比较后,得到c41。这样,就求出了c2 c3 c4111,并且得知抽样值位于第8段落内。,56,3)确定段内码c5 c6 c7 c8:段
26、内码是按量化间隔均匀编码的,每一段落均被均匀地划分为16个量化间隔。但是,因为各个段落的斜率和长度不等,故不同段落的量化间隔是不同的。对于第8段落,其量化间隔示于下图中。由编码规则表可见,决定c5等于“1”还是等于“0”的权值电流值在量化间隔7和8之间,即有Iw=1536。现在信号抽样值Is=1270,所以c5=0。同理,决定c6值的权值电流值在量化间隔3和4之间,故Iw=1280,因此仍有Is Iw,所以c7=1。最后,决定c8值的权值电流Iw=1216,仍有Is Iw,所以c8=1。,57,这样编码得到的8位码组为c1 c2 c3 c4 c5 c6 c7 c8 11110011,它表示的量
27、化值应该在第8段落的第3间隔中间,即等于(1280-1216)/2=1248(量化单位)。将此量化值和信号抽样值相比,得知量化误差等于1270 1248=22(量化单位)。顺便指出,除极性码外,若用自然二进制码表示此折叠二进制码所代表的量化值(1248),则需要11位二进制数()。,58,第一步,符号位,M1=1,第二步,求段落码,因为1024X=12502048,处于第8段。,第三步,求段内码,解:(1)求8位编码输出 M1 M2M3M4 M5M6M7M8,所以,段落码:M2M3M4=111,59,实际量化误差:,所以,编码器输出 M1 M2M3M4 M5M6M7M8=1 111 0011,
28、(2)求译码输出,得到段内码为:M5M6M7M8=0011,对数PCM与线性PCM变换,60,2.6.4 差分脉冲编码调制(DPCM)2.6.4.1 预测编码简介预测编码的目的:降低编码的比特率预测编码原理:在预测编码中,先根据前几个抽样值计算出一个预测值,再取当前抽样值和预测值之差。将此差值编码并传输。此差值称为预测误差。由于抽样值及其预测值之间有较强的相关性,即抽样值和其预测值非常接近,使此预测误差的可能取值范围,比抽样值的变化范围小。所以,可以少用编码比特来对预测误差编码,从而降低其比特率。此预测误差的变化范围较小,它包含的冗余度也小。这就是说,利用减小冗余度的办法,降低了编码比特率。,
29、61,线性预测原理:若利用前面的几个抽样值的线性组合来预测当前的抽样值,则称为线性预测。若仅用前面的1个抽样值预测当前的抽样值,则就是将要讨论的DPCM。线性预测编码原理方框图假定量化器的量化误差为零,即ek=rk,则由此图可见:上式表示mk*就等于mk。所以,可以把mk*看作是带有量化误差的抽样信号mk。,62,预测器的输出和输入关系由下列线性方程式决定:式中p 预测阶数,ai 预测系数。上式表明,预测值mk 是前面p个带有量化误差的抽样信号值的加权和。由方框图可见,编码器中预测器输入端和相加器的连接电路和译码器中的完全一样。故当无传输误码时,即当编码器的输出就是译码器的输入时,这两个相加器
30、的输入信号相同,即rk=rk。所以,此时译码器的输出信号mk*和编码器中相加器输出信号mk*相同,即等于带有量化误差的信号抽样值mk。,63,差分脉冲编码调制(DPCM)的原理及性能DPCM原理在DPCM中,只将前1个抽样值当作预测值,再取当前抽样值和预测值之差进行编码并传输。这相当于在下式中,p=1,a1=1,故sk=sk-1*。这时,上图中的预测器就简化成为一个延迟电路,其延迟时间为1个抽样间隔时间Ts。在下图中画出了DPCM系统的原理方框图。,64,为了改善DPCM体制的性能,将自适应技术引入量化和预测过程,得出自适应差分脉码调制(ADPCM)体制。它能大大提高信号量噪比和动态范围。,6
31、5,2.6.5 增量调制2.6.5.1 增量调制原理增量调制(M)可以看成是一种最简单的DPCM。当DPCM系统中量化器的量化电平数取为2时,DPCM系统就成为增量调制系统。,66,方框图编码器:预测误差ek=mk mk 被量化成两个电平+和。值称为量化台阶。这就是说,量化器输出信号rk只取两个值+或。因此,rk可以用一个二进制符号表示。例如,用“1”表示“+”,及用“0”表示“-”。,67,译码器:译码器由“延迟相加电路”组成,它和编码器中的相同。所以当无传输误码时,mk*=mk*。,68,实用方案:在实用中,为了简单起见,通常用一个积分器来代替上述“延迟相加电路”,并将抽样器放到相加器后面
32、,与量化器合并为抽样判决器。图中编码器输入信号为m(t),它与预测信号m(t)值相减,得到预测误差e(t)。预测误差e(t)被周期为Ts的抽样冲激序列T(t)抽样。若抽样值为负值,则判决输出电压+(用“1”代表);若抽样值为正值,则判决输出电压-(用“0”代表)。,69,波形图在解调器中,积分器只要每收到一个“1”码元就使其输出升高,每收到一个“0”码元就使其输出降低,这样就可以恢复出图中的阶梯形电压。这个阶梯电压通过低通滤波器平滑后,就得到十分接近编码器原输入的模拟信号。,70,2.6.5.2 增量调制系统中的量化噪声量化噪声产生的原因由于编译码时用阶梯波形去近似表示模拟信号波形,由阶梯本身
33、的电压突跳产生失真。这是增量调制的基本量化噪声,又称一般量化噪声。它伴随着信号永远存在,即只要有信号,就有这种噪声。信号变化过快引起失真;这种失真称为过载量化噪声。它发生在输入信号斜率的绝对值过大时。,71,最大跟踪斜率设抽样周期为Ts,抽样频率为fs=1/Ts,量化台阶为,则一个阶梯台阶的斜率k 为:它是译码器的最大跟踪斜率。当输入信号斜率超过这个最大值时,将发生过载量化噪声。为了避免发生过载量化噪声,必须使和fs的乘积足够大,使信号的斜率不超过这个值。另一方面,值直接和基本量化噪声的大小有关,若取值太大,势必增大基本量化噪声。所以,用增大fs的办法增大乘积fs,才能保证基本量化噪声和过载量
34、化噪声两者都不超过要求。实际中增量调制采用的抽样频率fs值比PCM和DPCM的抽样频率值都大很多;对于语音信号而言,增量调制采用的抽样频率在几十千赫到百余千赫。,72,2.6.6 时分复用和复接 2.6.6.1 基本概念时分多路复用原理,73,例如,若语音信号用8 kHz的速率抽样,则旋转开关应每秒旋转8000周。设旋转周期为Ts秒,共有N 路信号,则每路信号在每周中占用Ts/N 秒的时间。此旋转开关采集到的信号如下图所示。每路信号实际上是PAM调制的信号。,74,75,在接收端,若开关同步地旋转,则对应各路的低通滤波器输入端能得到相应路的PAM信号。上述时分复用基本原理中的机械旋转开关,在实
35、际电路中是用抽样脉冲取代的。因此,各路抽样脉冲的频率必须严格相同,而且相位也需要有确定的关系,使各路抽样脉冲保持等间隔的距离。在一个多路复用设备中使各路抽样脉冲严格保持这种关系并不难,因为可以由同一时钟提供各路抽样脉冲。时分复用的主要优点:便于实现数字通信、易于制造、适于采用集成电路实现、生产成本较低。模拟脉冲调制目前几乎不再用于传输。抽样信号一般都在量化编码后以数字信号的形式传输。故上述仅是时分复用的基本原理。,76,复接和分接复接:将低次群合并成高次群的过程。在通信网中往往有多次复用,由若干链路来的多路时分复用信号,再次复用,构成高次群。各链路信号来自不同地点,其时钟(频率和相位)之间存在
36、误差。所以在低次群合成高次群时,需要将各路输入信号的时钟调整统一。分接:将高次群分解为低次群的过程称为分接。目前大容量链路的复接几乎都是TDM信号的复接。标准:关于复用和复接,ITU对于TDM多路电话通信系统,制定了两种准同步数字体系(PDH)和两种同步数字体系(SDH)标准的建议。,77,2.6.2.2 准同步数字体系(PDH)ITU提出的两个建议:E体系 我国大陆、欧洲及国际间连接采用T体系 北美、日本和其他少数国家和地区采用,,78,79,E体系的结构图,80,E体系的速率:基本层(E-1):30路PCM数字电话信号,每路PCM信号的比特率为64 kb/s。由于需要加入群同步码元和信令码
37、元等额外开销(overhead),所以实际占用32路PCM信号的比特率。故其输出总比特率为2.048 Mb/s,此输出称为一次群信号。E-2层:4个一次群信号进行二次复用,得到二次群信号,其比特率为8.448 Mb/s。E-3层:按照同样的方法再次复用,得到比特率为34.368 Mb/s的三次群信号E-4层:比特率为139.264 Mb/s。由此可见,相邻层次群之间路数成4倍关系,但是比特率之间不是严格的4倍关系。,81,E体系的一次群结构,82,1帧:由于1路PCM电话信号的抽样频率为8000 Hz,抽样周期为125 s,即1帧的时间。时隙(TS):将1帧分为32个时隙,每个时隙容纳8比特。
38、在32个时隙中,30个时隙传输30路语音信号,另外2个时隙可以传输信令和同步码。其中时隙TS0和TS16规定用于传输帧同步码和信令等信息;其他30个时隙,即TS1TS15和TS17TS31,用于传输30路语音抽样值的8比特码组。时隙TS0的功能:在偶数帧和奇数帧不同。规定在偶数帧的时隙TS0发送一次帧同步码。帧同步码含7比特,为“0011011”,规定占用时隙TS0的后7位。时隙TS0的第1位“*”供国际通信用;若不是国际链路,则它也可以给国内通信用。TS0的奇数帧留作告警(alarm)等其他用途。在奇数帧中,TS0第1位“*”的用途和偶数帧的相同;第2位的“1”用以区别偶数帧的“0”,辅助表
39、明其后不是帧同步码;第3位“A”用于远端告警,“A”在正常状态时为“0”,在告警状态时为“1”;第48位保留作维护、性能监测等其他用途,在没有其他用途时,在跨国链路上应该全为“1”。,83,时隙TS16的功能:可以用于传输信令,但是当无需用于传输信令时,它也可以像其他30路一样用于传输语音。信令是电话网中传输的各种控制和业务信息,例如电话机上由键盘发出的电话号码信息等。在电话网中传输信令的方法有两种。一种称为共路信令(CCS),另一种称为随路信令(CAS)。共路信令是将各路信令通过一个独立的信令网络集中传输;随路信令则是将各路信令放在传输各路信息的信道中和各路信息一起传输。在此建议中为随路信令
40、作了具体规定。采用随路信令时,需将16个帧组成一个复帧,时隙TS16依次分配给各路使用。如图中第一行所示。,84,2.6.6.3 同步数字体系(SDH)SDH基本概念SDH是针对更高速率的传输系统制定出的全球统一的标准。整个网络中各设备的时钟来自同一个极精确的时间标准(例如铯原子钟),没有准同步系统中各设备定时存在误差的问题。在SDH中,信息是以“同步传送模块(STM)”的信息结构传送的。一个同步传送模块主要由信息有效负荷和段开销(SOH)组成块状帧结构,其重复周期为125s。按照模块的大小和传输速率不同,SDH分为若干等级。,85,SDH的速率等级目前SDH制定了4级标准,其容量(路数)每级
41、翻为4倍,而且速率也是4倍的关系,在各级间没有额外开销。STM-1:是基本模块,包含一个管理单元群(AUG)和段开销(SOH)。STM-N:包含N 个AUG和相应的SOH。,86,PDH体系和SDH体系之间的关系通常将若干路PDH接入STM-1内,即在155.52Mb/s处接口。这时,PDH信号的速率都必须低于155.52Mb/s,并将速率调整到155.52上。例如,可以将63路E-1,或3路E-3,或1路E-4,接入STM-1中。对于T体系也可以作类似的处理。这样,在SDH体系中,各地区的PDH体制就得到了统一。,87,PDH和SDH连接关系图,88,容器:是一种信息结构。PDH体系的输入信
42、号首先进入容器C-n,(n=1 4)。这里,它为后接的虚容器(VC-n)组成与网络同步的信息有效负荷。映射:在SDH网的边界处,使支路信号与虚容器相匹配的过程。在图中用细箭头指出。在ITU的建议中只规定有几种速率不同的标准容器和虚容器。每一种虚容器都对应一种容器。虚容器:也是一种信息结构。它由信息有效负荷和路径开销信息组成帧,每帧长125s或500s。虚容器有两种:低阶虚容器VC-n(n=1,2,3);高阶虚容器VC-n(n=3,4)。低阶虚容器包括一个容器C-n(n=1,2,3)和低阶虚容器的路径开销。高阶虚容器包括一个容器C-n(n=3,4)或者几个支路单元群(TUG-2或TUG-3),以
43、及虚容器路径开销。虚容器的输出可以进入支路单元TU-n。,89,支路单元TU-n(n=1,2,3):也是一种信息结构,它的功能是为低阶路径层和高阶路径层之间进行适配。它由一信息有效负荷(低阶虚容器VC-n)和一个支路单元指针组成。支路单元指针指明有效负荷帧起点相对于高阶虚容器帧起点的偏移量。支路单元群(TUG):由一个或几个支路单元组成。后者在高阶VC-n有效负荷中占据不变的规定的位置。TUG可以混合不同容量的支路单元以增强传送网络的灵活性。例如,一个TUG-2可以由相同的几个TU-1或一个TU-2组成;一个TUG-3可以由相同的几个TUG-2或一个TU-3组成。,90,管理单元AU-n(n=
44、3,4):也是一种信息结构。它为高阶路径层和复用段层之间提供适配。管理单元由一个信息有效负荷(高阶虚容器)和一个管理单元指针组成。此指针指明有效负荷帧的起点相对于复用段帧起点的偏移量。管理单元有两种:AU-3和AU-4。AU-4由一个VC-4和一个管理单元指针组成,此指针指明VC-4相对于STM-N帧的相位定位调整量。AU-3由一个VC-3和一个管理单元指针组成,此指针指明VC-3相对于STM-N帧的相位定位调整量。在每种情况中,管理单元指针的位置相对于STM-N帧总是固定的。管理单元群(AUG):由一个或多个管理单元组成。它在一个STM有效负荷中占据固定的规定位置。一个AUG由几个相同的AU-3或一个AU-4组成。,