《检测系统特性》PPT课件.ppt

上传人:小飞机 文档编号:5535049 上传时间:2023-07-19 格式:PPT 页数:66 大小:498.50KB
返回 下载 相关 举报
《检测系统特性》PPT课件.ppt_第1页
第1页 / 共66页
《检测系统特性》PPT课件.ppt_第2页
第2页 / 共66页
《检测系统特性》PPT课件.ppt_第3页
第3页 / 共66页
《检测系统特性》PPT课件.ppt_第4页
第4页 / 共66页
《检测系统特性》PPT课件.ppt_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《《检测系统特性》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《检测系统特性》PPT课件.ppt(66页珍藏版)》请在三一办公上搜索。

1、第 二 章,测 试 系 统,测试系统与输入/输出量之间的关系,完成某种物理量的测量而由具有某一种或多种变换特性的物理装置构成的总体。,测试系统定义:,测试系统的特性,测试系统的特性,静态测量:测量过程中被测量保持恒定不变的测量。动态测量:被测量本身随时间变化,而测量系统又能准确地跟随被测量变化而变化,称为动态测量。静态测量时,测试系统表现出的响应特性称为静态特性。动态测量时,测试系统的输出随输入而变化的关系,称为动态特性。,2.1静态特性,(一)测量仪器的准确度及其定量指标 准确度指测量仪器给出的示值和真值的接近程度。测量仪器最主要的计量性能指标;仅仅由仪器自身的原因造成;定性概念;定量指标用

2、准确度等级、示值误差或引用误差表示:示值误差测量值真实值(真实值用约定真值代替)引用误差=示值误差/量程 准确度等级就是根据示值误差或引用误差而划分的准确度级别。当某个测量仪器的引用误差不大于0.01时(1),该仪器的准确度为1级。但只是准确度等级为1级而决非准确度为1。如:电工仪表的准确度等级可分为:0.1、0.2、0.5、1.0、1.5、2.0、5.0七级。,2.1静态特性,(二)测量仪器的重复性(精密度)在相同测量条件下,重复测量同一个被测量时测量仪器示值的一致程度。重复性可以用示值的分散性来定量表示。要求仪器示值分散在允许的范围内。重复性是测量仪器的重要指标,反映了仪器工作的可信度和有

3、效性。,静态特性,(四)分辨力 分辨力是指测试系统可能检测出被测信号的最小变化的能力,通常是以最小单位输出量变化所对应的输入量变化来表示。分辨力与灵敏度有密切的关系,即为灵敏度的倒数。分辨力可以用绝对值,也可以用满量程的百分比来表示。对于数字测试系统,其输出显示系统的最后一位所代表的输入量即为该系统的分辨力;,静态特性,(五)信噪比 混杂在输出信号中的无用成分称为噪声。信噪比的表达式:定义1:20lgAS/AN(输出信号峰值/噪声信号峰值);定义2:10lgPS/PN(输出信号功率/噪声信号功率);一般仪器的信噪比要在40分贝以上。,静态特性,(六)示值范围、标称范围、量程、测量范围和动态范围

4、 示值范围是显示装置上最大与最小示值的范围。当仪器有多档量程时,用标称范围取代示值范围。量程指标称范围两极限值之差的模。如:温度计下限-30,上限80,则量程为110。测量范围又称工作范围,指测量仪器的误差处在规定极限内的一组被测量的值。一般小于或等于标称范围。动态范围是仪器所能测量的最强信号和最弱信号之比。动态范围=20lg(最大信号幅值或有效值/最小信号的幅值或有效值)测量范围可以随着输入信号的衰减或增益而改变,但动态范围不变。,静态特性,(七)漂移、回程误差、线性度 在输入不变的情况下,测量仪器的特性随时间缓慢变化的现象称为漂移。温度的漂移(温漂):灵敏度的温漂、零位的温漂-定量表示,产

5、生:检测装置中的弹性元件、机械传动中的间隙和内摩擦、磁性材料的磁滞-实验确定,回程误差(Hysteresis)-迟滞/滞后误差在相同条件下,测量仪器的行程方向(指输入量增大或减小两个方向)不同而同一输入量值最大示值之差的绝对值,或者此绝对值与满量程输出之比的百分数。,线性度(非线性度)是指测试系统的输入、输出关系保持常值线性比例关系的程度。常用量程内特性曲线与拟合直线的最大输出量偏差绝对值与满量程输出之比表示。,characteristics,Accuracy,Sensitivity,Linearity,Resolution,Repeatability,Drift,Hysteresis(回程误

6、差),Range,Static,2.2 动态特性(Dynamic performance),动态特性是指输入量随时间变化时,其输出随输入而变化的关系。反映系统动态特性的指标有:工作频率范围、响应特性和响应时间。工作频率范围:能确保测量仪器规定准确度的被测量频率范围。响应特性:在确定条件下,激励和对应响应之间的关系。响应时间:输入量和对应输出量两个特定时刻的时间间隔。系统的动态特性一般通过描述系统的数学模型如微分方程、或找出系统的动态特性函数如传递函数、频率响应函数等来进行研究。,2.2.1 测试系统的数学模型及频率特性一、系统模型的划分 线性系统与非线性系统线性系统:具有叠加性、比例性的系统

7、时变系统与时不变系统:由系统参数是否随时间而变化决 定。一般的测试系统都可视为线性时不变系统。,线性系统的性质:叠加性:引起的输出分别为 如输入为 则输出为比例特性(齐次性):如 引起的输出为,则 引起的输出为。微分特性:引起的输出为积分特性:引起的输出为频率保持性:如 则,重要结论:,线性系统具有频率保持特性的含义是输入信号的频率成分通过线性系统后仍保持原有的频率成分。根据输入信号的频率成分确定输出信号的频率成分,识别输出信号的真伪及噪声、干扰;比较输入输出信号的频率成分,判断系统是否为线性系统。,如余弦信号通过非线性系统(二极管),则输出被整流,其频率成分被改变。,2.2.1 测试系统的广

8、义数学模型,测试系统的数学模型是根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电路定律等)而得出的一组将输入和输出联系起来的数学方程式。常系数线性微分方程(General Differential equation)线性时不变系统可用常系数线性微分方程来描述其输入x(t)和输出y(t)之间的关系。an,an-1,a0,bm,bm-1,b0是由系统本身物理参数所决定的常数系统的阶次由输出量最高微商阶次n决定。,举例,RLC电路,如果输入电压是随时间变化的,其输出是随时间变化的电压 则输入和输出之间的微分方程:,描述系统动态特性更为广泛的函数是传递函数。传递函数的定义:x(t)、y(t)及

9、其各阶导数的初始值为零,系统输出信号的拉普拉斯变换(拉氏变换)与输入信号的拉氏变换之比,记为 式中 为输出信号的拉氏变换 为输入信号的拉氏变换 s为拉氏变换算子:和 皆为实变量,2.2.2 传递函数(Transfer function),复频率,H(s)=,一般测试系统都是稳定系统,其分母中s的幂次总是高于分子中s的幂次(nm)。,由:,对微分方程两边作拉氏变换:,环节的串联和并联 一个测试系统,通常是由若干个环节所组成,系统的传递函数与各环节的传递函数之间的关系取决于各环节之间结构形式。任何一个高于二阶的系统都可以看成是由若干个一阶和二阶系统的并联或串联。因此,一阶和二阶系统是分析和研究高阶

10、、复杂系统的基础。,频率响应函数(Frequency response),当测试系统的输入为正弦信号:,根据频率保持特性,系统稳态输出为同频率的正弦信号:,将输入、输出代入微分方程得:,定义频率响应函数为该频率信号的输出与输入之比,记作,A()-曲线称为幅频特性曲线,()-曲线称为相频特性曲线。,H(j)一般为复数,写成实部和虚部的形式:,则:,将微分方程两边作傅里叶变换,在变换过程中利用傅氏变换的微分性质得:,可见频率响应函数也可定义为系统稳态输出量的傅立叶变换与输入量的傅立叶变换之比。,重要结论,通过傅里叶变换可把满足一定条件的任意信号分解成不同频率的正弦信号之和,因此从物理意义上说,频率

11、响应函数在频率域中反映一个系统对各种频率正弦输入信号的稳态响应,故又称其为正弦传递函数。如只研究稳态过程的信号,则用频响函数来分析系统。如研究稳态和瞬态全过程信号,则用传递函数来分析系统。频率响应函数可以较容易地通过实验的方法获得,因而成为应用最广泛的动态特性分析工具。,2.2.4 常见测试系统,系统阶次由输出量最高微分阶次确定。最常见的测试系统可概括为零阶系统、一阶系统、二阶系统。零阶系统(Zero-order system)数学表述传递函数K:静态灵敏度零阶系统的输出和输入同步变化,不产生任何的失真和延迟,因此是一种理想的测试系统,如位移电位器、电子示波器等。,一阶仪表数学表述传递函数 静

12、态灵敏度 时间常数(响应时间),一阶系统(First-order System),在工程实际中,一个忽略了质量的单自由度振动系统,在施于A点的外力f(t)作用下,其运动方程为,一阶系统的频率特性:一阶系统是一个低通环节。只有当远小于1/时,幅频响应才接近于1,因此一阶系统只适用于被测量缓慢或低频的参数。幅频特性降为原来的0.707(即-3dB),相位角滞后45o,时间常数决定了测试系统适应的工作频率范围。越小,响应越快,可测频率范围越宽。,一阶系统的频率响应函数为:,负值表示相角的滞后,二阶系统(Second-order system),数学表述传递函数频率响应函数:静态灵敏度(Transdu

13、ction constant)系统固有频率(The angular natural frequency)阻尼比(Damping ratio),如图所示的弹簧质量阻尼系统,其运动方程为:,将此公式左右作付里叶变换得:,该系统的频响函数为,二阶系统的频率特性,(1)二阶系统是个低通环节,当/n很小时,A()k,当(/n)1,A()0。(2)系统发生共振,/n=1时,A()=k/(2),()=-90。(3)二阶系统动态参数有两个:固有频率n和阻尼比。应选择合适的固有频率和阻尼比以扩大工作频率范围。通常使/n0.3,=0.60.7,这时,幅频特性曲线的平直段最宽。,如果输入输出信号满足:A0、t0都是

14、常数,称为不失真测试。,2.2.5 理想测试系统,信号不失真测试是指系统的输出信号与输入信号相比,只有幅度大小和时间先后的不同,而没有波形的变化。,2.3.1 脉冲响应函数 如果输入信号是单位脉冲信号,即:单位脉冲信号 的定义:,2.3 测量系统对瞬态激励的响应,瞬态响应,反映了系统的固有特性。因此评价系统动态特性的一个重要方法就是分析系统对瞬态输入信号的反应。,经拉氏变换,系统对单位脉冲函数 的响应为 h(t)常称为脉冲响应函数。,系统,2.3.2 单位阶跃响应函数,相对原点有一时移 的单位脉冲信号 的响应为。既然面积为1的 信号所引起的系统响应为,那么位于原点上的面积为 的窄条信号输入后所

15、引起的该系统响应应为,偏离原点的位置 的窄条面积信号 的响应信号应为。,系统,2.3.3 测试系统对任意输入信号的时频域响应,因此由很多窄条叠加而成的 所引起的总的响应 应为各窄条分别的响应之和。当,则,系统,系统对任意输入信号的时频域响应,在时域内,任意信号通过系统的响应(输出)是输入信号与系统的单位脉冲响应函数的卷积;单位脉冲响应函数标志着一个测试系统对信号的传输特性。在频域内响应信号的频谱函数是输入信号的频谱函数与系统的频响函数的乘积。,2.4 测试系统频率特性的确定,测定频响函数的目的:在作动态检测时,要确定系统的不失真工作频段是否符合要求。测定频响函数的方法:用标准信号输入,测出其输

16、出信号,从而求得需要的特性。输入的标准信号有正弦信号、脉冲信号和阶跃信号。,正弦信号激励,理论依据:方法:输入各种频率的正弦信号,检测系统的输出信号,作出对应频率成分的输出与输入信号的幅值比(幅频特性)和相位差(相频特性)。是最为精确的方法。,对于一阶测试系统,主要特性参数是时间常数,可以通过幅频、相频特性数据直接计算值。,对于二阶系统,通常通过幅频特性曲线估计其固有频率n和阻尼比。据理论分析,欠阻尼系统(1)幅频特性曲线峰值r不在固有频率n处,而满足:在 处输出与输入的相位差为90o,相频曲线在该点的斜率反映了阻尼比的大小。缺点:相位的精确测量很难实现。,阶跃信号激励,阶跃信号激励也可以用来

17、测量系统频响函数中的决定性参数,如固有频率 和阻尼比 1.一阶系统 2.二阶系统,一阶测试系统的阶跃响应函数为,二阶测试系统的阶跃响应,理论分析表明,二阶系统的阶跃响应函数表明它的瞬态响应是以 的圆频率作衰减振荡。阻尼比越大,超调量M就越小,振荡波形衰减越快。,M1:最大过冲量度d:有阻尼固有频率,例题:,某一阶测量装置的传递函数为,若用它测量频率为0.5Hz、1Hz、2Hz的正弦信号,试求其幅度误差。,当=0.04,w=2f 时,幅度误差=(1-A(w)100%,2.5 测量不确定度,一、测量不确定度的含义,定义:是测量结果含有的一个参数,用以表征合理的赋予被测量量值的分散性。测量结果的表示

18、:测量结果并非一个确定值,而是包含分散的无数个可能值所处的一个区间。测量不确定度正是这个区间的度量。,被测量的估计,测量不确定度,与检测系统的组成和各组成环节有关,二、测量不确定度产生的原因,由被测对象本身引起的不确定性 性质、状态、条件以及被测量的种类、状态 因检测理论的假定产生的不确定性 实际情况与假定情况不符 检测系统各环节所使用的材料性能和制造技术引起的不确定性 检测系统各环节动力源的变化引起的不确定性 电流、电压、气压、液压等,检测系统器件特性变化引起的不确定性-偏离设定值 检测环境引起的不确定性 环境条件(温度、湿度、气压等)差异 器件的性能 检测方法不确定性 检测方法、采样方法、

19、测量重复次数、取样时间 检测人员造成的不确定性 人员视觉、读数误差、经验、熟练程度、精神方面原因(疲劳),三、测量不确定度产生的原因,四、测量不确定度的评定方法,(一)标准不确定的评定1、标准不确定度的A类评定 用统计分析方法获得的不确定度评定,称为A类评定 在相同测量条件下得到若干独立观测值:其算术平均值为 如果用任一独立测量值qi作为被测量的估计值,其标准不确定度的A类评定为:,如果用这些观测值的平均值表示被测量的估计值,其标准不确定度的A类评定为:,(一)标准不确定的评定,2、标准不确定度的B类评定通过非统计分析法得到的不确定度,称为B类评定。分析影响被测量估计值的全部信息,如以前的测量

20、数据、有关仪器和装置的一般知识、使用说明书、检验证书、其他报告或手册提供的数据。需要深刻了解有关测量知识、测量过程和经验积累。,例:若已知观测值分布区间半宽a,对于正态分布:对于均匀分布:若观测值取自资料,且说明该观测值的测量不确定度Ui是标准差的k倍,则该观测值的标准不确定度,(二)自由度及其确定,含义:自由度定量表征了不确定评定的质量。自由度越大表示不确定度的评定结果越可信,评定质量越高。确定方法:若某量等于若干项变量之和,则该量的自由度等于和的项数减去对和的限制数。例:n个独立观测值方差的自由度为n-1。不确定度的自由度等于不确定度计算表达式中总和所包含的项数减去各项之间存在的约束条件。

21、,(1)标准不确定度A类评定的自由度(2)标准不确定度B类评定的自由度 是u的标准差,称为u的相对标准不确定度,根据确定u时的信息来源判断u的可信程度对u的估计有80的把握,则来源越可靠,自由度越大。若有一定的主观判断因素,则可取较小数值,如5以下。,(三)测量不确定度的合成,1、合成标准不确定度(1)对任何一个直接测量量,由于有若干个相互独立的因素影响它的估计值,因此xi对应若干标准不确定度分量,xi的标准不确定度ui为:,(2)对于间接测量量 若每个直接测量量 的标准不确定度分量为,则y的合成标准不确定度为:此时测量结果就可以表示为:,(三)测量不确定度的合成,2、展伸不确定度 在一些高精度比对或与安全、健康相关的测量中,希望给出测量结果的区间,使被测量的各次观测值以大概率被包含在区间内。这个区间宽度的一半称为展伸不确定度或扩展不确定度。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号