《心轴的强度及刚度计算.ppt》由会员分享,可在线阅读,更多相关《心轴的强度及刚度计算.ppt(48页珍藏版)》请在三一办公上搜索。
1、一、心轴弯曲的概念与实例二、作用在心轴上载荷的分类 三、剪力与弯矩 四、剪力图与弯矩图 五、平面弯曲梁的强度计算 六、平面弯曲梁的刚度计算 七、提高梁强度和刚度的措施,一、心轴弯曲的概念与实例,心轴:工作时仅承受弯矩而不传递转矩。受力特点:梁轴线平面内受到力偶矩或垂直于轴线方向的 外力作用。变形特征:构件的轴线由直线变成一条曲线,这种变形称为弯曲变形。以弯曲变形为主的构件习惯上称为梁。,工程实际中常用直梁的横截面形状主要有圆形、矩形、T字形和工字形等。,心轴横截面一般都有一个或几个对称轴,由纵向对称轴与梁的轴线组成的平面称为纵向对称平面。,图 6.3,二、作用在心轴上载荷的分类,集中力,集中力
2、偶,均布载荷,外伸梁:梁的一端或两端伸在支座之外的简支梁。,悬臂梁:梁的一端为固定端支座,另一端为自由端。,简支梁:梁的一端为固定铰链支座,另一端为活动铰链支座。,梁的简化,三、剪力与弯矩,利用静力平衡条件求出A、B的支座反力NA与NB为:,用一截面将梁沿m-m截面截开,取左段进行分析:,若取m-m截面右段为研究对象,作同样分析后,可求得与左段截面上等值、反向的剪力s和弯矩M,与左段截面上的剪力Fs和弯矩M互为作用与反作用的关系。,剪力符号规定,剪力符号规定:使所取该段梁产生“左上右下”的相对错动的剪力方向为正,反之为负;弯矩符号规定:使所取该段梁弯曲呈上凹下凸的弯矩为正,反之为负。,弯矩符号
3、规定,梁内任一截面上的剪力,等于截面任一侧梁上外力的代数和;梁内任一截面上的弯矩,等于截面任一侧梁上外力对该截面形心力矩的代数和。计算剪力时:截面左侧向上的外力、右侧向下的外力取正号;计算弯矩时:无论截面左侧或右侧,向上的外力取正号,向下的外力取负号。,四、剪力图和弯矩图 工程中,梁横截面上的剪力和弯矩沿梁的轴线发生变化。若以横坐标x表示梁的横截面位置,则梁在各横截面上的剪力Fs和弯矩M可以写成x的函数:,Fs=Fs(x)M=M(x),为了直观地反映梁上各横截面上的剪力和弯矩的大小及变化规律,可根据剪力方程和弯矩方程,用横坐标x表示梁的横截面的位置,纵坐标分别表示剪力Fs和弯矩M的大小而画出的
4、图形,分别称为剪力图和弯矩图。,剪力方程,弯矩方程,【例3-1】如图(a)所示,简支梁AB受集中截荷F=12kN,试画出其剪力图和弯矩图。,例3-1图,解(1)求A、B的支座反力。,(2)列剪力方程与弯矩方程。,对AC段,取距A端为x1的截面左段,画出受力图,如图(b)所示。列平衡方程:,对CB段,取距A端为x2的截面左段,画出受力图,如图(c)所示。列平衡方程:,(3)绘制剪力图和弯矩图。,【例3-2】如图(a)所示,简支梁AB上作用一集中力偶M,试绘出梁AB的剪力图和弯矩图。,例3-2图,解(1)求AB的支座反力,由力偶系平衡可得,(2)列剪力方程和弯矩方程。1-1截面,剪力方程为:,弯矩
5、方程为:,(0 x1a),2-2截面,剪力方程为:,弯矩方程为:,(ax2l),(3)绘制剪力图和弯矩图。,【例3-3】如图(a)所示,悬臂梁AB受均布载荷作用,试绘制其剪力图和弯矩图。解 设截面m-m与B端之间的距离为x,取m-m截面的右段为研究对象,画出受力图,如图(b)所示。根据平衡条件:,Fs-qx=0 Fs=qx(0 xl),(0 xl),四、剪力图和弯矩图,利用剪力、弯矩与载荷集度的微分关系,可不比列出剪力和弯矩方程即可画出剪力图和弯矩图。,五、平面弯曲梁的强度与刚度计算,1、纯弯曲试验,纯弯曲:只有弯矩没有剪力。,剪切弯曲:既有剪力又有弯矩。,纯弯曲梁的变形,纯弯曲梁的变形特征:
6、横向线仍是直线且仍与梁的轴线正交,只是相互倾斜了一个角度;纵向线(包括轴线)都变成了弧线;梁横截面的宽度发生了微小变形,在压缩区变宽了些,在拉伸区则变窄了些。,2、横截面上的正应力,梁受纯弯曲时,其横截面上只有正应力,没有切应力。横截面上任意一点的正应力与该点到中性轴的距离成正比,距中性轴等高度的各点正应力相等,而中性轴上各点处正应力为零,离中性轴最远的梁的上、下边缘处正应力最大,最大正应力用符号max表示,其值为:,式中,称为截面对中性轴z的抗弯截面系数,其单位为m3或mm3,可以证明距离中性轴为y处点的正应力计算公式为:y=My y/Iz式中,Iz为横截面对中性轴的惯性矩对矩形截面:Iz=
7、bh3/12,圆形截面:Iz=d4/64。,圆形截面:,圆环截面:,圆形截面:,矩形截面:,圆形截面:,3、组合截面二次矩 平行移轴公式,若梁的截面形状复杂,并可分解为几个简单图形的组合,则可用平行移轴公式计算某截面对任意轴的截面二次矩:,3、组合截面二次矩 平行移轴公式,【例】试求图3-2-27所示T形截面对其形心轴的惯性矩。,解:,1.求T形截面的形心座标yc,2.求截面对形心轴z轴的惯性矩,4、弯曲正应力强度条件,对于一般塑性材料其抗拉强度与抗压强度相等时,采用材料的许用拉(压)应力。当材料的抗拉强度与抗压强度不相同(脆性材料),应分别校核抗拉强度与抗压强度。对于中性轴不是截面的对称梁,
8、其最大拉应力值与最大压应力值不相等。如图所示的T形截面梁,最大拉应力和最大压应力分别为:,4、弯曲正应力强度条件,利用强度条件可解决三类强度计算问题:,强度校核:,截面设计:,确定需用载荷:,【例】如图所示,一矩形截面悬臂梁长l=4m,材料的许用应力=150MPa,求此悬臂梁的许可载荷。,图 6.15,解:绘出悬臂梁的弯矩图,如图b)所示。图中,Mmax=Fl=4000F。梁的横截面抗弯截面系数为:,由梁的弯曲正应力强度条件得:,因此,悬臂梁的许可载荷为F=25 000N。,【例】某建筑工地上,用长为l=3 m的矩形截面木板做跳板,木板横截面尺寸 b=500 mm,h=50 mm,木板材料的许
9、用应力=6 MPa,试求:(1)一体重为700N的工人走过是否安全?(2)要求两名体重均为700N的工人抬着1500 N的货物安全走过,木板的宽度不变,重新设计木板厚度h。,解(1)计算弯矩的最大值max。当工人行走到跳板中央时,弯矩最大。,校核弯曲强度:,所以,体重为700 N的工人走过是安全的。,(2)设工人重力和货物重力合成为一个集中力,且作用在跳板长度的中点时最危险,此处弯矩最大值为:,按弯曲强度设计:,h65.95,所以,木板厚度h应满足h66 mm。,六、梁 的 弯曲变形概述,挠度:截面形心位移的垂直分量(线位移),用表示。,1、挠度与转角,A,y,t,q,C,1,C,m,B,x,
10、t,m,q,正负号规定:向上为正,向下为负,转角:梁弯曲变形后,轴上任意一点C处的横截面m-m将绕中性轴转动一个角度至m-m,其角位移称为该截面的转角。,正负号规定:逆为正,顺为负,=f(x),挠曲线方程,2、挠曲线微分方程,几种常见梁的简单载荷作用下的变形,当梁上同时受到几个载荷作用时,可分别计算出单个载荷作用下梁的挠度和转角,再将它们求代数和,得到所有载荷同时作用时梁的总变形。,3、计算变形的叠加法,4、刚度条件,其中、的具体数值可查有关设计手册。,【例】如图(a)所示,行车大梁采用NO.45a工字钢,跨度l=9m,电动葫芦重5 kN,最大起重量为55 kN,许用挠度=l/500,试校核行
11、车大梁的刚度。,解:将行车简化后受力情况如图6.17(b)所示。把梁的自重看成均布载荷,并且,当电动葫芦处于梁的中央时,梁的变形最大。(1)用叠加法求挠度。查手册可知:NO.45a工字钢的q=788N/m,Iz=32 240 cm4,E=200GPa。梁需要承受的最大载荷F=5+55=60kN。,查表可得,在力F作用下产生的挠度为:,在均布载荷q作用下产生的挠度为:,梁的最大变形:c max=CF+Cq=0.015 m。,所以梁的刚度足够。,七、提高梁的承截能力的措施,1、合理安排梁的支承 均布载荷作用在简支梁上时,最大弯矩与跨度的平方成正比,如能减少梁的跨度,将会降低梁的最大弯矩。,七、提高
12、梁的承截能力的措施,2、合理布置载荷 使梁上载荷分散布置,可以降低最大弯矩。,3、选择合理的截面,根据抗弯截面系数与截面面积比值Wz/A选择截面,七、提高梁的承截能力的措施,抗弯截面系数越大,梁能承受载荷越大;横截面积越小,梁使用的材料越少。同时考虑梁的安全性与经济性,可知Wz/A值越大,梁截面越合理。,矩形截面:,圆形截面:,高为h的工字形与槽形截面:,三种截面的合理顺序是:1)工字形与槽形截面;2)矩形截面;3)圆形截面。,4.减小跨度或增加支承 由前面内容可知,梁的变形与梁的跨度的高次方成正比,减小跨度L能够有效地提高梁的抗弯刚度并减少弯矩;增加支承也可以提高梁的抗弯刚度。如车床上车削工
13、件时,由于车刀尖给工件作用力,不用尾架顶尖时工件易变形。使用顶尖后,变形可以减小。,3、选择合理的截面,根据材料的拉压性能选择截面,七、提高梁的承截能力的措施,对于塑性材料,其抗拉强度和抗压强度相等,宜采用中性轴为截面对称轴的截面,使最大拉应力与最大压应力相等。如矩形、工字形、圆环形、圆形等截面形式。对于脆性材料,其抗压强度大于抗拉强度,宜采用中性轴不是对称轴的截面,如T形截面,使中性轴靠近受拉端:,思 考 与 练 习,3.1 具有对称截面的直梁发生平面弯曲的条件是什么?3.2 如何理解在集中力作用处,剪力图发生突变?在集中力偶作用处,弯矩图发生突变?3.3 一矩形截面梁,它的高、宽之比h/b
14、=2,在相同受力条件下,截面竖放与平放时,横截面上的最大正应力相差几倍?3.4 为什么弯曲与拉伸组合变形时只需要校核拉应力强度条件,而弯曲与压缩组合变形时脆性材料要同时校核拉应力和压应力强度条件?,3.5 同时承受拉伸、扭转和弯曲变形的圆截面杆件,按第三强度理论建立的强度条件是否可写成如下形式?为什么?,3.6 试列出练习3.6图示的各梁的剪力方程和弯矩方程,画出剪力图和弯矩图。,练习3.6图,3.7 空心管梁受载如练习3.7图所示,已知=150MPa,外径D=80 mm,求内径d的最大值。,练习3.7图,3.8 一矩形截面外伸梁受力如练习3.8图所示。已知材料许用应力=160MPa,求最大许可载荷Fmax。,练习3.8图,