《《随机变量基础》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《随机变量基础》PPT课件.ppt(52页珍藏版)》请在三一办公上搜索。
1、本次课内容概率的基本术语随机变量的定义随机变量的分布函数与概率密度多维随机变量,第一章 随机变量基础,1.1 概率的基本术语,随机试验 Random Experiment随机事件 Random Event基本事件 Elementary(Simple)Event样本空间 Sample Space频率 Frequency概率 Probability,投掷骰子出现1点,1,2,3,4,5,6,投掷骰子出现偶数点,样本空间,随机事件,基本事件,关于样本空间的注释:Discrete Sample Space:,Toss a die:S=1,2,3,4,5,6,连续的样本空间:,由多次子试验构成的样本空间
2、:看下例,Toss a coin:S=Head,Tail=H,T,IF we toss a coin three times and let the triplet xyz denote the outcome“x on the first toss,y on the second toss,z on the third toss”,then the sample space of the experiment is,S=HHH,HHT,HTH,HTT,THH,THT,TTH,TTT,The event“one head and two tails”is defined byE=HTT,THT
3、,TTH,由多次子试验构成的样本空间,可数无穷的样本空间,S=S1 S1=HH,HT,TH,TT,S1=H,T,利用频率估计概率n次重复试验中,事件A发生的次数为nA,比值称为事件A发生的频率。频率反映了事件A发生的频繁程度,若事件A发生的可能性大,那么相应的频率也大,反之则较小。,概率,计算机模拟:投掷一枚均匀硬币,模拟计算出现正面的概率。,number=0;for i=1:N%set up simulation for 4 coin toses if rand(1,1)0.5%toss coin with p=0.5 x(i,1)=1;%head else x(i,1)=0;%tail e
4、ndnumber=number+x(i,1);%count number of headsendP=number/N;,1.2 随机变量的定义(Definition of a random variable),设随机试验E的样本空间为S=e,如果对于每一个eS,有一个实数X(e)与之对应,这样就得到一个定义在S上的单值函数X(e),称X(e)为随机变量,简记为X。,随机变量是定义在样本空间S上的单值函数,1.定义,Interpretation of random variable:,S,e,Real line,Random variable is a function that assigns
5、 a numerical value to the outcome of the experiment.,A coin toss,S,e1,Real line,1,0,e2,Mapping of the outcome of a coin toss into the set of real number,A discrete random variable is a random variable that can be take on at most a countable number of possible values,根据随机变量取值的不同可以分为:连续型随机变量(Continuou
6、s random variable)离散型随机变量(Discrete random variable),2.概率分布列,Probability mass function(PMF),(0,1)分布 指示型随机变量随机变量的可能取值为0和1两个值,PMF为,PMF:,(0,1)分布的随机变量;指示型随机变量;贝努里随机变量;,Bernoulli random variable,Let A be an event of interest in some experiment,e.g.,a device is not defective.We say that a“success”occurs if
7、 A occurs when we perform the experiment.Bernoulli random variable IA is equal to 1 if A occurs and zero otherwise.,例:信息传输问题(Message Transmissions),Let X be the number of times needs to be transmitted until it arrivers correctly at its destination.Find the probability that X is an a even number.,X i
8、s a discrete random variable taking on values from S=1,2,3,.,The event X=k occurs if k-1 consecutive erroneous transmissions(failures)followed by a error-free one(success),X is called the geometric random variable,Example:Transmission error in a binary communications channel.Let X be the number of e
9、rrors in n independent transmissions.Find the PMF of x.Find the probability of one or fewer errors,X takes on values in the set 0,1,n,If there is no error,each transmission results in a 0If there is an error,each transmission results in a 1,The probability of k errors in n bits transmissions is give
10、n as follows,We call X the binomial random variable,贝努里试验 随机试验只有两种结果。产品合格或不合格 元件没有失效或失效 信息发送成功或失败 打靶命中或脱靶 目标检测或漏检,贝努里序列(Bernoulli Sequence),N次连续的独立的贝努里试验称为贝努里序列,Consecutive independent Bernoulli trials comprise a Bernoulli sequence.,贝努里试验-N重贝努里试验(0,1)分布-二项式分布,信息传输,泊松分布(Poisson distribution),1.3 分布函数
11、和概率密度函数,Probability Density Function,(PDF),Distribution Function or Cumulative Distribution Function,(CDF),1.定义,2.分布函数的性质(Properties of the CDF),分布函数是右连续的不减函数,在负无穷处为零,正无穷处为1。对于连续型随机变量,取某一特定值的概率是为零的。即PX=x=0,对于离散型随机变量,分布函数为阶梯函数。,概率密度,对于离散型随机变量,它的概率密度函数是一串函数之和。,Check Yourself,Suppose X=c,Where c is con
12、stant,Which of following is correct?,A.,B.,C.,D.,E.None of Above,Check Yourself,Suppose X=c,Where c is constant,Which of following is correct?,A.,B.,C.,D.,E.None of Above,3.常见概率分布 正态分布(Normal),也称高斯(Gauss)分布,标准正态分布函数,瑞利分布(Rayleigh),瑞利分布概率密度2,指数(Exponential)分布,指数分布概率密度,指数分布可以用来表示独立随机事件发生的时间间隔,比如,旅客进机场
13、的时间间隔,维基(wikipedia)新条目出现的时间间隔,电话呼叫的时间间隔等,是一个率(Rate)参数。,对数正态分布(LogNormal),高分辨率雷达杂波分布,对数正态分布概率密度,为尺度参数为形状参数,1.4 多维随机变量及其分布 Multiple Random Variables and Distributions,1.定义,比如:同时投掷一个1元硬币和一个1角硬币,样本空间为S=HH,TH,TT,HT。,HH,TH,TT,HT,x,y,2.二维分布函数和概率密度 Bivariate CDF and PDF,二维分布函数图解,定义:,性质:参看教材,二维概率密度:,对于二维离散随机
14、变量,定义联合概率质量函数(Join PMF),二维概率密度:,3.条件分布(Conditional Distribution),条件分布函数,条件概率密度,称随机变量X、Y独立,条件概率质量函数(Conditional PMF):,以随机事件为条件的概率密度:,几个重要的贝叶斯公式:,全概率公式:,贝叶斯公式:,概率分布与概率密度的全概率公式:,Example:Communication Channel with Discrete Input and Continuous Output,The input X to a communication channel is+1 volt or-1 volt.The output Y of the channel is the input plus a noise voltage N that is uniformly distributed in the interval from-2 volts to+2 volts.Find PX=+1,Y0,Solution:,Therefore,本次课小结:(1)概率的基本术语:随机试验 基本事件 随机事件 样本空间,频率与概率(2)随机变量的定义 从样本空间到实轴的映射(3)随机变量的分布 PMF CDF PDF 典型随机变量的分布(4)条件分布,