《资产定价理论.ppt》由会员分享,可在线阅读,更多相关《资产定价理论.ppt(30页珍藏版)》请在三一办公上搜索。
1、第五章 资本资产定价理论,第一节 资本资产定价模型,增加的假设条件:,投资者具有同质预期,即市场上的所有投资者对资产 的评价和对经济形势的看法都是一致的,对资产收益 和收益概率分布的看法也是一致的。,存在无风险资产,投资者可以以无风险利率无限制地 借入或者贷出资金。,允许卖空,投资者可以无限制地卖空任意数量的一种 或多种资产。,一、存在无风险资产金融市场的证券组合选择,设 金融市场上有一种无风险证券,其收益率为R0,n种有风险资产(即有n种股票可以投资),投资的收益仍然用 表示,,式中 表示矩阵的转置,设投资组合为,若给定收益为a,则,风险资产组合的方差为:,投资者所要求的最优资产组合仍然必须
2、满足下面两个条件之一:,在预期收益水平确定的情况下,即,求 风险达到最小,即,在风险水平确定的情况下,即,求,使收益最大,即,达到最大。,将条件用数学语言表达出来是:,满足约束条件,由此得到的证券组合的方差:,上式可写成直线:,由于在这个条件下,最小方差的证券组合是存在的。因而,反过来,如果 满足上式,则它对应的证券组合就是最小方差证券组合.,这表示,如果金融市场存在无风险资产,且在证券组合 投资收益为a的条件下,若风险最小的投资组合的风险 为,则(a,)满足方程,直线如图所:,二、资本市场线,在给定了投资目标、证券组合的收益,我们讨论了寻找的最小方差的证券组合,其方差及证券组合的收益必须满足
3、一直线方程。,引入下面的定义:,记为S.R.,如图所示,理性的投资者必然会选择单位风险回报最大的投资 组合。所以理性人选择投资时,一部分投放在无风险债券上(回报为R0),一部分投放在过点的(0,R0)的直线与有效前沿曲线相切点所代表的资产组合。也就是在市场线上选择的投资组合是最佳的(在这条直线上每一点的斜率都一样。而与(0,R0),点和有效前沿曲线上任何点的连线的斜率相比,它的斜率最大,即夏普比最大)。,下面将说明直线,就是与有效前沿相切并过点的(0,R0)的直线。,上,的最小方差投资证券组合(说明该投资组合在有效前沿上)。,因此其方程又可表示为:,点 和 点之间的线段表示投资者在无风险资产和
4、资产之间进行了适当的资金配置;,三、市场组合,四、证券市场线,两者的协方差:,风险资产组合x而言,它与 点相对应的证券组合,五、对证券市场线的进一步说明,(一)对于任意的风险资产xi,根据 式,我们可以得到:,当 时,我们称风险资产xi为进攻性的。即市场价格上涨时,它的价格上涨得更快。,当 时,我们称风险资产xi为防御性的。即当市场价格下跌时,它的价格下跌得更慢。,还有一个很有意思的性质,它正好是风险资产xi的一元线性回归方程的回归系数,(二)对于任意一种投资组合p,设该投资组合的投资权重为:,式中,六、对传统CAPM模型的评价和改进,在20世纪70年代,威廉夏普和法码等人先后对非一致预期的C
5、APM模型进行了研究,并取得了一些成果,证明了风险资产价格一般均衡解的存在性。但是,他们发现无法找到可以在一般均衡条件下对风险资产进行定价的显函数。,解决这一问题的途径是对投资者的效用函数加以一定的约束,使得风险和收益之间的边际替代率不再是财富的函数,从而避免了循环关系。在这种情况下,对非同质预期CAPM模型进行研究后得出的结论是:尽管投资者的预期各不相同,但是他们面临的有效前沿仍然是一样的,传统CAPM模型依然有效。,(一)非同质预期CAPM模型,(二)零贝塔值的CAPM模型,零贝塔值的CAPM模型释放的假设条件是:存在无风险资产,投资者可以以无风险利率无限制地借入或者贷出资金。在这里,无风
6、险资产被零贝塔值的资产组合所代替。因为贝塔值为零,所以零贝塔值资产组合的收益与市场组合的收益无关。,(三)存在个人所得税的CAPM,税收调整后的CAPM模型可以表示为:,证券市场线方程为:,(四)时际CAPM,时际CAPM所引入的不同假设有:投资者可以连续不断地进行资产交易;投资者根据 经济状态变量(如通货膨胀率、利率等)随时调整消费 和投资组合决策,投资目标是使其终身消费期望效用最 大化;资本市场处于瞬时出清的状况。另外,投资者在 其生命期内的消费效用函数可以分解为当前消费效用函 数以及以后各期的衍生效用函数,其中衍生效用函数定义在财富水平和用于描述未来投资和消费机会的状态变量集上。时际CA
7、PM可表示为:,当存在着s个经济状态变量,并且其风险可以由第,种资产完全冲抵时,我们可以,得到多状态变量的CAPM模型,表示如下:,其中,ac表示消费的瞬时期望增长率。,当最优消费流遵从扩散过程时,根据伊藤引理,可以将多贝塔的CAPM简化为单贝塔的消费导向CAPM,表示为:,(五)消费导向的CAPM,第二节 套利定价模型,一、套利定价模型的分析思路,套利定价模型与资本资产定价模型相同的假设有:资本市场是完全竞争和有效的,不存在交易成本;投资者的目标是实现期望效用最大化;所有的投资者对资产的收益分布具有一致的预期与资本CAPM不同的是,套利定价模型并不要求投资者能以无风险的利率借入和贷出资金,不
8、要求投资者以资产组合的收益和方差为基础进行投资决策套利定价模型假设风险资产的收益受到市场上几种不同风险因子的影响,设风险资产的收益受到k个风险因素的影响:,用矩阵形式表示:,同时满足下列两个条件:,二、套利和套利定价模型,设xi为投资组合中资产的投资权重,则由自融资 的 特点(在整个投资过程中不注资也不撤资),我们可以得到:,零风险套利组合的期望收益也将为零,用数学公式表示为:,对于任意的风险资产i而言,,若存在无风险资产,令 表示某一资产对其他所有风险因子的敏感度均为零,而对第j个风险因子的敏感度为1时的期望收益率,则,上式代入,得到:,式中的 可以解释为,三、套利定价模型和资本资产定价模型
9、的比较,上式变化为:,上式实际上就是CAPM模型的标准形式。也就是说,CAPM模型实际上是APT模型的一个特例。,APT模型与CAPM模型最大的区别就在于前者采用的是无套利的分析方法,而后者采用的风险/收益分析方法。,与CAPM模型相比,APT模型是在更弱的假设条件下推导出的更为一般的资本市场定价模型。,APT模型的主要局限性主要表现在两个方面:首先,APT模型没有说明决定资产定价的风险因子的数目和类型,也没有说明各个因子风险溢价的符号和大小,这就使得模型在实际应用中有着一定的困难;其次,由于APT模型中包含了残差风险,而残差风险只有在组合中存在大量的分散化资产时才能被忽略,因此APT模型实际上是一种极限意义上的资产定价理论,对于实际生活中资产数目有限的资产组合而言,其指导意义受到一定的限制。,