两个总体的假设检验.ppt

上传人:牧羊曲112 文档编号:5907858 上传时间:2023-09-02 格式:PPT 页数:37 大小:649KB
返回 下载 相关 举报
两个总体的假设检验.ppt_第1页
第1页 / 共37页
两个总体的假设检验.ppt_第2页
第2页 / 共37页
两个总体的假设检验.ppt_第3页
第3页 / 共37页
两个总体的假设检验.ppt_第4页
第4页 / 共37页
两个总体的假设检验.ppt_第5页
第5页 / 共37页
点击查看更多>>
资源描述

《两个总体的假设检验.ppt》由会员分享,可在线阅读,更多相关《两个总体的假设检验.ppt(37页珍藏版)》请在三一办公上搜索。

1、第 四章 两个总体参数的检验,一、两个总体均值之差的检验二、两个总体比率之差的检验三、两个总体方差比的检验,两个总体参数的检验,两个总体参数的检验,z 检验(大样本),t 检验(小样本),t 检验(小样本),z 检验,F 检验,独立样本,配对样本,均值,比率,方差,两个总体均值之差的检验(独立大样本),两个总体均值之差的检验(独立大样本),1.假定条件两个样本是独立的随机样本正态总体或非正态总体大样本(n130和 n230)检验统计量 12,22 已知:12,22 未知:,两个总体均值之差的检验(大样本检验方法的总结),两个总体均值之差的检验(例题分析),【例】某公司对男女职员的平均小时工资进

2、行了调查,独立抽取了具有同类工作经验的男女职员的两个随机样本,并记录下两个样本的均值、方差等资料如右表。在显著性水平为0.05的条件下,能否认为男性职员与女性职员的平均小时工资存在显著差异?,两个总体均值之差的检验(例题分析),H0:1-2=0H1:1-2 0=0.05n1=44,n2=32临界值(c):,检验统计量:,决策:,结论:,拒绝H0,该公司男女职员的平均小时工资之间存在显著差异,两个总体均值之差的检验(独立小样本),两个总体均值之差的检验(12,22 已知),假定条件两个独立的小样本两个总体都是正态分布 12,22已知检验统计量,两个总体均值之差的检验(12,22 未知但12=22

3、),假定条件两个独立的小样本两个总体都是正态分布12、22未知但相等,即12=22检验统计量,其中:,自由度:,两个总体均值之差的检验(12,22 未知且不相等1222),假定条件两个总体都是正态分布12,22未知且不相等,即1222样本容量相等,即n1=n2=n检验统计量,自由度:,两个总体均值之差的检验(12,22 未知且不相等1222),假定条件两个总体都是正态分布12,22未知且不相等,即1222样本容量不相等,即n1n2检验统计量,自由度:,两个总体均值之差的检验(例题分析),【例】甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且

4、有12=22。为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。在=0.05的显著性水平下,样本数据是否提供证据支持“两台机床加工的零件直径不一致”的看法?,两个总体均值之差的检验(例题分析),H0:1-2=0H1:1-2 0=0.05n1=8,n2=7临界值(c):,检验统计量:,决策:,结论:,不拒绝H0,没有理由认为甲、乙两台机床加工的零件直径有显著差异,两个总体均值之差的检验(用Excel进行检验),第1步:将原始数据输入到Excel工作表格中 第2步:选择“工具”下拉菜单并选择“数据分析”选项 第3步:在“数据分析”

5、对话框中选择“t-检验:双样本等方差 假设”第4步:当对话框出现后 在“变量1的区域”方框中输入第1个样本的数据区域 在“变量2的区域”方框中输入第2个样本的数据区域 在“假设平均差”方框中输入假定的总体均值之差 在“”方框中输入给定的显著性水平(本例为0.05)在“输出选项”选择计算结果的输出位置,然后“确定”,用Excel进行检验,两个总体均值之差的估计(例题分析),【例】为检验两种方法组装产品所需时间的差异,分别对两种不同的组装方法各随机安排12个工人,每个工人组装一件产品所需的时间(分钟)下如表。假定两种方法组装产品的时间服从正态分布,但方差未知且不相等。取显著性水平0.05,能否认为

6、方法1组装产品的平均数量明显地高于方法2?,两个总体均值之差的检验(用Excel进行检验),第1步:将原始数据输入到Excel工作表格中 第2步:选择“工具”下拉菜单并选择“数据分析”选项 第3步:在“数据分析”对话框中选择“t-检验:双样本异方差 假设”第4步:当对话框出现后 在“变量1的区域”方框中输入第1个样本的数据区域 在“变量2的区域”方框中输入第2个样本的数据区域 在“假设平均差”方框中输入假定的总体均值之差 在“”方框中输入给定的显著性水平(本例为0.05)在“输出选项”选择计算结果的输出位置,然后“确定”,用Excel进行检验,两个总体均值之差的检验(匹配样本),两个总体均值之

7、差的检验(匹配样本),假定条件两个总体配对差值构成的总体服从正态分布配对差是由差值总体中随机抽取的 数据配对或匹配(重复测量(前/后)检验统计量,样本差值均值,样本差值标准差,匹配样本(数据形式),两个总体均值之差的检验(匹配样本检验方法的总结),两个总体均值之差的检验(例题分析),【例】某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分10分),评分结果如下表。取显著性水平=0.05,该公司是否有证据认为消费者对两种饮料的

8、评分存在显著差异?,两个总体均值之差的检验(用Excel进行检验),第1步:选择“工具”下拉菜单,并选择“数据分析”选项第3步:在分析工具中选择“t检验:平均值的成对二样本分析”第4步:当出现对话框后 在“变量1的区域”方框内键入数据区域 在“变量2的区域”方框内键入数据区域 在“假设平均差”方框内键入假设的差值(这里为0)在“”框内键入给定的显著性水平,用Excel进行检验,两个总体比率之差的检验,1.假定条件两个总体都服从二项分布可以用正态分布来近似检验统计量检验H0:1-2=0检验H0:1-2=d0,两个总体比率之差的检验,两个总体比率之差的检验(检验方法的总结),两个总体比率之差的检验

9、(例题分析),【例】一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法是否存在差异,分别抽取了200名男学生和200名女学生进行调查,其中的一个问题是:“你是否赞成采取上网收费的措施?”其中男学生表示赞成的比率为27%,女学生表示赞成的比率为35%。调查者认为,男学生中表示赞成的比率显著低于女学生。取显著性水平=0.01,样本提供的证据是否支持调查者的看法?,两个总体比率之差的检验(例题分析),H0:1-2 0H1:1-2 0=0.05n1=200,n2=200临界值(c):,检验统计量:,决策:,结论:,拒绝H0(P=0.041837=0.05),样本提供的证据支持

10、调查者的看法,两个总体比率之差的检验(例题分析),【例】有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产?,两个总体比率之差的检验(例题分析),H0:1-28%H1:1-28%=0.01n1=300,n2=300临界值(c):,检

11、验统计量:,决策:,结论:,拒绝H0(P=1.22E-15=0.05),方法1的次品率显著低于方法2达8%,应采用方法1进行生产,两个总体方差比的检验,两个总体方差比的检验(F 检验),假定条件两个总体都服从正态分布,且方差相等两个独立的随机样本检验统计量,两个总体方差比的 F 检验(临界值),两个总体方差比的检验(检验方法的总结),两个总体方差比的检验(例题分析),【例】一家房地产开发公司准备购进一批灯泡,公司打算在两个供货商之间选择一家购买。这两家供货商生产的灯泡平均使用寿命差别不大,价格也很相近,考虑的主要因素就是灯泡使用寿命的方差大小。如果方差相同,就选择距离较近的一家供货商进货。为此,公司管理人员对两家供货商提供的样品进行了检测,得到的数据如右表。检验两家供货商灯泡使用寿命的方差是否有显著差异(=0.05),两个总体方差比的检验(用Excel进行检验),第1步:选择“工具”下拉菜单,并选择“数据分析”选项第3步:在分析工具中选择“F检验双样本方差”第4步:当出现对话框后 在“变量1的区域”方框内键入数据区域 在“变量2的区域”方框内键入数据区域 在“”框内键入给定的显著性水平 选择输出区域 选择“确定”,用Excel进行检验,结 束,THANKS,:,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号