《总体均数的估计和假设检验.ppt》由会员分享,可在线阅读,更多相关《总体均数的估计和假设检验.ppt(48页珍藏版)》请在三一办公上搜索。
1、总体均数的估计和假设检验,一 均数的抽样误差(sampling error)与标准误(standard error,SE),抽样研究的目的是要用样本信息推断总体特征,称统计推断。1均数的抽样误差,如要了解某地成年男子红细胞数的总体均数,抽得144个样本,求出样本均数=5.381012/L,估计该地成年男子红细胞数的总体均数,由于抽样误差,-称均数的抽样误差。,2分布,(1)xN(,2)则 N(,2/n)x是偏态总体,n30 近似正态(2)的总体均数为,标准差=/,3标准误,抽样误差的标准差称为标准误,反映了用样本均数代替总体均数的可靠性程度的大小,增加样本容量可以降低抽样误差。未知时,用样本标
2、准差s估计,例1某地成年男子红细胞数的抽样调查,n=144人,=5.381012/L,s=0.441012/L,求其标准误。,(1012/L),二t分布,1 xN(,2)作变换u=N(0,1)同理u=但 通常未知 t=t(n-1),2t分布的特征,(1)tu(n)(2)和N(0,1)一样都是单峰分布,以0为中心对称(3)越小,则 越大,t值越分散,和N(0,1)相比,集中在这部分的比例越多,尾部翘得越高。,3.t界值表,横标目为自由度=n-1,纵标目为概率p,表中数字表示自由度为、p为 t的界值,记t,如单侧=0.05,=20可查得t,=1.725表示p(t1.725)=0.05由t分布的对称
3、性p(t-1.725)=0.05t,以外尾部面积的百分数是,4双侧t,=单侧t/2,三总体均数的参数估计,统计推断包括参数估计(点估计和区间估计)和假设检验,参数估计是用样本指标来估计总体指标。,1点估计,2区间估计,(1)未知 XN(,2)则 t,有 p(-t,t t,)=1-(可信度)即p(-t,t,)=1-,所以的可信度1-的可信区间是(,)简记为,例 某地成年男子中抽得144人的样本,求得红细胞数均数为5.378(109/L),标准差为0.439(109/L),试估计该地成年男子红细胞数的95%可信区间。5.3781.9790.439/12,即(5.306,5.450),(2)已知(3
4、)未知,但n足够大,3几点注记,(1)统计意义:从总体中作大数次随机抽样,有95%求得的可信区间包含总体均数。并不是做一次抽样求得可信区间包括的概率是0.95,对一次抽样而言只有两种可能,要么可信区间包含,要么不包含。(2)两个要素:准确度,即1-,精度,即区间的长度。(3)与医学正常值范围不同,四假设检验(hypothesis test),假设检验(hypothesis testing)也称显著性检验(significance test)。二十世纪二、三十年代Neyman和Pearson建立了统计假设检验问题的数学模型。,1引言,例 根据大量调查,已知健康成年男子脉搏的均数为72次/分,某医
5、生在一山区随机调查了25名健康成年男子,求得脉搏均数为74.2次/分,标准差为6.0次/分,能否据此认为该山区成年男子的脉搏均数高于一般人?,我们当然不能强求脉搏均数恰为72次/分时,才认为山区成年男子的脉搏均数和一般人一样,因为即使一样由于抽样误差的存在,样本均数未必等于72,造成山区健康成年男子的脉搏样本均数与一般人不同的原因有:抽样误差 环境因素的影响要回答这一问题就是假设检验问题,2假设,任一个关于总体分布的假设称统计假设,简称假设。假设有两种:检验假设(无效假设、原假设)记H0 备择假设 记H1 如上例,H0:=72 H1:72,例 为比较2种安眠药的疗效,检验假设可为:H0:2种安
6、眠药的平均睡眠时间相同,即1=2 H1:2种安眠药的平均睡眠时间不同,即12 单、双侧检验,3.假设检验的步骤,(1)确定假设和检验水平(2)计算检验统计量(3)查表确定p值,作出统计推断,4形式,样本均数与总体均数比较的t检验比较的目的是样本所代表的未知总体均数与已知的总体均数0有无差别,例,(1)确定假设和检验水平 H0:=72 H1:72=0.05 单侧检验(2)计算检验统计量=24(3)查表确定p值,作出统计推断查表得0.05p0.025 拒绝H0,认为,统计思想:,假定H0成立,查表得到p=0.05(小概率)的界值为1.711,根据小概率事件原理,t1.711都是不可能发生的,而现在
7、发生了,所以拒绝H0,配对设计的差值均数与总体均数0比较的t检验,检验统计量=n-1,适用于:(A)自身配对,同一受试对象处理前后的比较,推断该处理有无作用,如,例 用克矽平雾化吸入治疗矽肺患者7人,得到治疗前后的血清粘蛋白(mg/L),能否认为治疗会引起患者血清粘蛋白的变化?H0:d=0 H1:d0=0.05 双侧检验,(B)同源配对,同一受试对象分别给予两种处理,推断两种处理的效果有无差别,例 尿铅测定长期以来用湿式热消化法-双硫腙法,后改用硝酸-高锰酸钾冷消化法,说明两法测得结果有无差别?,(C)按性质相近配对,对同对的两个受试对象分别给予两种处理。,例 某单位研究饮食中缺乏维生素E与肝
8、中维生素A含量的关系,将同种属的大白鼠按性别相同,年龄、体重相近者配成对子,共8对,并将每对中的两头动物随机分到正常饲料组和维生素E缺乏组,过一定时期将大白鼠杀死,测得其肝中维生素A的含量,问不同饲料的大白鼠肝中维生素含量有无差别?,成组设计的两均数比较的t检验,有些研究的设计不能自身配对,也不便配对,只能将独立的两组均数作比较,如手术组与非手术组、新药治疗组与原用药治疗组。有的试验要把动物杀死后才能获得所需数据,除非事先作好了配对设计,一般只能作两组间的比较,两组例数可以不等,这是配对设计所不能做到的。从两总体中分别抽取容量为n1、n2的样本,比较两总体均数1和2有无差别。,检验统计量,=n
9、1+n2-2,例 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L),问该地急性克山病患者与健康人的血磷值是否不同?患者X1:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人X2:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87H0:1=2 H1:12=0.05 双侧检验,成组设计的两几何均数比较的t检验,医学上有些资料呈倍数关系,如血清滴度等,有些资料呈对数正态分布,如人体血铅含量等,这类资料宜用几何均数来表示其平均水平。目的是推
10、断各自的总体几何均数有无差别。只须对样本观察值作变换y=lg(x)即可。,成组设计的两大样本均数比较的u检验,例 测得30名以上的冠心病患者142人的血清胆固醇,另以506名年龄相仿的非患者作比较,结果如下,试分析冠心病患者的血清胆固醇是否较高?,5 t检验和u检验的条件,t检验:要求样本来自正态分布,且两均数比较时还要求两总体方差相等。u检验:n较大。,五两类错误,由于样本的随机性,假设检验中作出的结论可能会犯两类不同类型的错误:(1)H0成立,但由于样本的随机性,拒绝了H0所犯的错误称第一类错误或型错误或拒真错误。犯第一类错误的概率记作(2)H0不成立,但由于样本的随机性,不拒绝H0所犯的
11、错误称第二类错误或型错误或受伪错误。犯第二类错误的概率记作,当样本例数n一定时,减小则会增大。检验效能(power of a test):亦称把握度,1-,它的意义是当两总体确有差别,按规定检验水准所能发现该差异的能力。,六方差齐性检验,t检验的条件是样本观察值来自于正态分布,且要求两组比较时两组总体方差相等,由于抽样误差的存在,即使总体方差相等,求出的样本方差也未必相等,但是否一定是由抽样误差引起的呢?用F检验统计量F=s12 是较大的一个方差,1=n1-1 2=n2-1附表3中的单侧的界值,实对应双侧的界值,例 由X光片上测得两组病人的肺门横径右侧距R1值(cm)。结果如下:矽肺0期病人:
12、n1=50=4.34 s1=0.56肺癌病人:n2=10=6.21 s2=1.79H0:12=22H1:1222=0.10 F=10.2171=n1-1=9 2=n2-1=49查附表3得F=10.217F0.10,9,49=2.07,p0.10,故按=0.10水平拒绝 H0,认为两组病人的总体方差不等。,七t检验,t检验的应用条件要求两个总体方差相等,如不等时,可以:1 变量变换2 非参数检验3 近似t检验(即t检验)有3种不同的算法:Cochran&Cox法(1950)Satterthwaite法(1946)Welch法(1947),八假设检验应注意的问题,1.要有严密的抽样研究计划 要保证
13、样本是从同质总体中随机抽取。除了对比的因素外,其它影响结果的因素应一致。2选用的假设检验方法应符合其应用条件要了解变量的类型是计量的还是计数的,设计类型是配对设计还是成组设计,是大样本还是小样本。,3.结论不能绝对化4.正确理解差别有无显著性的统计意义差别有显著性,或有统计意义,指我们有很大的把握认为原假设不正确,并非是说它们有较大的差别。差别无显著性,或无统计意义,我们只是认为以很大的把握拒绝原假设的理由还不够充分,并不意味着我们很相信它。5.统计显著性与其它专业上的显著性的意义不同,九可信区间与假设检验的联系与区别,1.可信区间也可以回答假设检验的问题 2.可信区间比假设检验可提供更多的信息,