《模拟电子技术基础课件第1章.ppt》由会员分享,可在线阅读,更多相关《模拟电子技术基础课件第1章.ppt(80页珍藏版)》请在三一办公上搜索。
1、电 路,北京工商大学 计算机与信息工程学院 电子信息系 李 文,本课程共85学时,含6次(12学时)实验。第3,5,7,9,11,13周工三205实验室。考试方式:平时(40%)+期末(60%)平时:出勤+作业+课堂回答+实验,一、课程介绍,二、内容简介,电 路,基础知识:电路模型和基本概念,电路定律:基尔霍夫电流、电压定律,电阻电路:等效变换、分析方法,电路定理:叠加、替代、戴维南、诺顿、最大功率传输,电路时域分析:一阶电路、二阶电路、储能元件,正弦稳态电路:相量法、复功率,三相电路:线电压、相电压,二端口网络,三、课程性质与教学目标,1.课程性质,是后续技术基础课(高、低频电子线路,信号与
2、系统)和专业课(通信原理等)的基础。它是由逻辑思维过渡到工程思维的桥梁课,在整个电子与电气信息类专业的人才培养和课程体系中起着承前启后的重要作用。,2.教学目标,使学生获得有关电路分析方面的基本理论、基本知识和基本技能,为学习后续课程以及今后从事工程技术工作打好基础。,四、电路的发展简史,1729年 英 雷格:导体和绝缘体1749年 美 富兰克林:正电和负电1785-1789年 法 库仑:库仑定律1800年 意大利 伏特:伏打电池1820年 丹麦 奥斯特:电流的磁效应1825年 法 安培:安培环路定律1826年 德 欧姆:欧姆定律1831年 英 法拉第:电磁感应,1832年 亨利:自感系数18
3、34年 俄 楞次:楞次定律1838年 美 莫尔斯:发明电报1845年 德 基尔霍夫:集总参数电路KCL、KVL1853年 汤姆逊:电路模型、振荡频率 亥姆霍兹:等效发电机定理1854年 亥姆霍兹:电缆传输理论1857年 基尔霍夫:基尔霍夫方程(电报员方程)1864年 英 麦克斯韦:麦克斯韦方程组,预言电磁波1887年 德 赫兹:证明电磁波的存在1866年 德 西门子:发电机,四、电路的发展简史,四、电路的发展简史,1881年:直流高压输电试验成功 发明变压器交流高压输电电气化时代1876年 美 贝尔:发明电话1879年 美 爱迪生:碳丝灯泡1912年 美 库利奇:钨丝灯泡1880年 英 霍普金
4、森:磁路定律1893年 施泰因梅茨:正弦交流电相量法 瑞士 阿尔甘:交流电路的矢量分析法1894年 意大利 马可尼 俄 波波夫:发明无线电,四、电路的发展简史,1897年 英 弗莱明:实用的真空二极管1906年 美 德福雷斯特:真空三极管1914年 振荡电路1911年 英 亥维赛:阻抗概念、电路瞬态过程1918年 福泰克:三相交流电的对称分析法1924年 福斯特:二端网络电抗定理、网络理论1925年 英 贝尔德:发明电视1933年 美 兹沃雷金:显像管、电视机1932年 瑞典 奈奎斯特:闭环系统稳定性1945年美 伯德:负反馈放大器原理、线性电路,四、电路的发展简史,1947年 贝尔实验室:半
5、导体器件-点接触晶体管、进入半导体时代1958年:发明集成电路1947年:第一个电子计算机1960年:吉尔曼引入图论,计算机辅助设计 出现新型电路元件,形成近代电路理论 经典电路理论,1.要找出与中学物理“电学”部分的联系与不同,是在其基础上的延续和加深。,中学是从研究某一问题的特殊性入手。,大学是从问题的普遍性(共性)入手,建立物理量间的函数关系得到其特殊性。,例:电流的概念,中学:I=q/t 单位时间内流过导体横截面积的电量直流。,大学:电流是电荷随时间的变化率,是时间的函数。当常数不随时间变化时恒定电流直流,五、学习方法,五、学习方法,.建立数学模型,学会分析和处理问题的方法,而不是用大
6、量,习题来验证一个概念,与高三应试教育不同。,第1章 电路模型和电路定律,本章重点,1.电压、电流的参考方向,3.基尔霍夫定律,重点:,2.电阻元件和电源元件的特性,返 回,1.1 电路和电路模型,1.实际电路,功能,a 能量的传输、分配与转换;b 信息的传递、控制与处理。,建立在同一电路理论基础上。,由电工设备和电气器件按预期目的连接构成的电流的通路。,下 页,上 页,共性,返 回,反映实际电路部件的主要电磁 性质的理想电路元件及其组合。,2.电路模型,电路图,理想电路元件,有某种确定的电磁性能的理想元件。,电路模型,下 页,上 页,返 回,卧室灯 电路,卧室门口,床头,5种基本的理想电路元
7、件-本课程研究对象,电阻元件:表示消耗电能的元件,电感元件:表示产生磁场,储存磁场能量的元件,电容元件:表示产生电场,储存电场能量的元件,电压源和电流源:表示将其它形式的能量转变成 电能的元件。,5种基本理想电路元件有三个特征:(a)只有两个端子;(b)可以用电压或电流按数学方式描述;(c)不能被分解为其他元件。,下 页,上 页,注意,返 回,具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一电路模型表示;同一实际电路部件在不同的应用条件下,其电路模型可以有不同的形式。,下 页,上 页,例,电感线圈的电路模型,注意,返 回,1.2 电流和电压的参考方向,电路中的主要物理量有电压、电流、
8、电荷、磁链、能量、电功率等。在线性电路分析中人们主要关心的物理量是电流、电压和功率。,1.电流的参考方向,电流,电流强度,带电粒子有规则的定向运动,单位时间内通过导体横截面的电荷量,下 页,上 页,返 回,方向,规定正电荷的运动方向为电流的实际方向,单位,1kA=103A1mA=10-3A1 A=10-6A,A(安培)、kA、mA、A,元件(导线)中电流流动的实际方向只有两种可能:,对于复杂电路或电路中的电流随时间变化时,电流的实际方向往往很难事先判断。,下 页,上 页,问题,返 回,参考方向,任意假定一个正电荷运动的方向即为电流的参考方向。,i 0,i 0,实际方向,实际方向,电流的参考方向
9、与实际方向的关系:,下 页,上 页,表明,返 回,电流参考方向的两种表示:,用箭头表示:箭头的指向为电流的参考方向。,用双下标表示:如 iAB,电流的参考方向由A指向B。,下 页,上 页,返 回,电压U,单位,2.电压的参考方向,单位正电荷q 从电路中一点移至另一点时电场力做功(W)的大小。,电位,单位正电荷q 从电路中一点移至参考点(0)时电场力做功的大小。,实际电压方向,电位真正降低的方向。,下 页,上 页,V(伏)、kV、mV、V,返 回,例,已知:4C正电荷由a点均匀移动至b点电场力做功8J,由b点移动到c点电场力做功为12J,若以b点为参考点,求a、b、c点的电位和电压Uab、U b
10、c;若以c点为参考点,再求以上各值。,解,(1),下 页,上 页,返 回,解,(2),下 页,上 页,结论,电路中电位参考点可任意选择;参考点一经选定,电路中各点的电位值就唯一确定;当选择不同的电位参考点时,电路中各点电位值将改变,但任意两点间电压保持不变。,返 回,复杂电路或交变电路中,两点间电压的实际方向往往不易判别,给实际电路问题的分析计算带来困难。,电压(降)的参考方向,假设高电位指向低电位的方向。,下 页,上 页,问题,返 回,电压参考方向的三种表示方式:,(1)用箭头表示:,(2)用正负极性表示,(3)用双下标表示,U,U,+,UAB,下 页,上 页,返 回,元件或支路的u,i 采
11、用相同的参考方向称之为关联参考方向。反之,称为非关联参考方向。,关联参考方向,非关联参考方向,3.关联参考方向,i,+,-,+,-,i,u,u,下 页,上 页,返 回,分析电路前必须选定电压和电流的参考方向,参考方向一经选定,必须在图中相应位置标注(包括方向和符号),在计算过程中不得任意改变,参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变。,例,电压电流参考方向如图中所标,问:对A、B两部分电路电压电流参考方向关联否?,答:A电压、电流参考方向非关联;B电压、电流参考方向关联。,下 页,上 页,注意,返 回,1.3 电功率和能量,1.电功率,功率的单位:W(瓦)(Watt,瓦特
12、),能量的单位:J(焦)(Joule,焦耳),单位时间内电场力所做的功。,下 页,上 页,返 回,2.电路吸收或发出功率的判断,u,i 取关联参考方向,P=ui 表示元件吸收的功率,P0 吸收正功率(实际吸收),P0 吸收负功率(实际发出),P=ui 表示元件发出的功率,P0 发出正功率(实际发出),P0 发出负功率(实际吸收),u,i 取非关联参考方向,下 页,上 页,返 回,例,求图示电路中各方框所代表的元件吸收或产生的功率。,下 页,上 页,已知:U1=1V,U2=-3V,U3=8V,U4=-4V,U5=7V,U6=-3V,I1=2A,I2=1A,,I3=-1A,返 回,解,对一完整的电
13、路,满足:发出的功率吸收的功率,下 页,上 页,注意,返 回,下 页,上 页,1.4 电路元件,是电路中最基本的组成单元。,1.电路元件,返 回,5种基本的理想电路元件:,电阻元件:表示消耗电能的元件,电感元件:表示产生磁场,储存磁场能量的元件,电容元件:表示产生电场,储存电场能量的元件,电压源和电流源:表示将其它形式的能量转变成 电能的元件。,注意,如果表征元件端子特性的数学关系式是线性关系,该元件称为线性元件,否则称为非线性元件。,2.集总参数电路,由集总元件构成的电路,集总元件,假定发生的电磁过程都集中在元件内部进行。,集总条件,下 页,上 页,集总参数电路中u、i 可以是时间的函数,但
14、与空间坐标无关。因此,任何时刻,流入两端元件一个端子的电流等于从另一端子流出的电流;端子间的电压为单值量。,注意,返 回,下 页,上 页,例,集总参数电路,两线传输线的等效电路,当两线传输线的长度 l 与电磁波的波长满足:,返 回,下 页,上 页,分布参数电路,当两线传输线的长度 l 与电磁波的波长满足:,返 回,1.5 电阻元件,2.线性时不变电阻元件,电路符号,电阻元件,对电流呈现阻力的元件。其特性可用ui平面上的一条曲线来描述:,任何时刻端电压与电流成正比的电阻元件。,1.定义,伏安特性,下 页,上 页,0,返 回,ui 关系,R 称为电阻,单位:(Ohm),满足欧姆定律,单位,G 称为
15、电导,单位:S(Siemens),u、i 取关联参考方向,下 页,上 页,伏安特性为一条过原点的直线,返 回,如电阻上的电压与电流参考方向非关联,公式中应冠以负号;,说明线性电阻是无记忆、双向性的元件。,欧姆定律,只适用于线性电阻(R 为常数);,则欧姆定律写为,u R i i G u,公式和参考方向必须配套使用!,下 页,上 页,注意,返 回,3.功率和能量,电阻元件在任何时刻总是消耗功率的。,p u i(R i)i i2 R-u2/R,p u i i2R u2/R,功率,下 页,上 页,表明,返 回,从 t0 到 t 电阻消耗的能量:,4.电阻的开路与短路,能量,短路,开路,下 页,上 页
16、,0,0,返 回,下 页,上 页,实际电阻器,返 回,1.6 电压源和电流源,电路符号,1.理想电压源,定义,下 页,上 页,其两端电压总能保持定值或一定的时间函数,其值与流过它的电流 i 无关的元件叫理想电压源。,返 回,电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。,通过电压源的电流由电源及外电路共同决定。,理想电压源的电压、电流关系,直流电压源的伏安关系,下 页,上 页,例,外电路,电压源不能短路!,0,返 回,电压源的功率,电压、电流参考方向非关联;,电流(正电荷)由低电位向高电位移动,外力克服电场力作功,电源发出功率。,发出功率,起电源作用,物理意义:,下
17、页,上 页,电压、电流参考方向关联;,物理意义:,电场力做功,电源吸收功率,吸收功率,充当负载,返 回,例,计算图示电路各元件的功率,解,发出,吸收,吸收,满足:P(发)P(吸),下 页,上 页,返 回,其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u 无关的元件叫理想电流源。,电路符号,2.理想电流源,定义,下 页,上 页,理想电流源的电压、电流关系,电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关。,返 回,电流源两端的电压由电源及外电路共同决定。,直流电流源的伏安关系,下 页,上 页,0,例,外电路,电流源不能开路!,返 回,可由稳流电子设备产生,如晶
18、体管的集电极电流与负载无关;光电池在一定光线照射下光电子被激发产生一定值的电流等。,下 页,上 页,实际电流源的产生:,电流源的功率,电压、电流的参考方向非关联;,发出功率,起电源作用,电压、电流的参考方向关联;,吸收功率,充当负载,返 回,例,计算图示电路各元件的功率,解,发出,吸收,满足:P(发)P(吸),下 页,上 页,返 回,实际电源,干电池,钮扣电池,1.干电池和钮扣电池(化学电源),干电池电动势1.5V,仅取决于(糊状)化学材料,其大小决定储存的能量,化学反应不可逆。,钮扣电池电动势1.35V,用固体化学材料,化学反应不可逆。,下 页,上 页,返 回,氢氧燃料电池示意图,2.燃料电
19、池(化学电源),电池电动势1.23V。以氢、氧作为燃料。约40-45%的化学能转变为电能。实验阶段加燃料可继续工作。,下 页,上 页,返 回,3.太阳能电池(光能电源),一块太阳能电池电动势0.6V。太阳光照射到P-N结上,形成一个从N区流向P区的电流。约 11%的光能转变为电能,故常用太阳能电池板。,一个50cm2太阳能电池的电动势0.6V,电流0.1A,太阳能电池示意图,太阳能电池板,下 页,上 页,返 回,蓄电池示意图,4.蓄电池(化学电源),电池电动势2V。使用时,电池放电,当电解液浓度小于一定值时,电动势低于2V,常要充电,化学反应可逆。,下 页,上 页,返 回,直流稳压源,变频器,
20、频率计,函数发生器,下 页,上 页,返 回,发电机组,下 页,上 页,返 回,草原上的风力发电,下 页,上 页,返 回,1.7 受控电源(非独立源),电路符号,受控电压源,1.定义,受控电流源,电压或电流的大小和方向不是给定的时间函数,而是受电路中某个地方的电压(或电流)控制的电源,称受控源。,下 页,上 页,返 回,电流控制的电流源(CCCS),:电流放大倍数,根据控制量和被控制量是电压u 或电流i,受控源可分四种类型:当被控制量是电压时,用受控电压源表示;当被控制量是电流时,用受控电流源表示。,2.分类,四端元件,输出:受控部分,输入:控制部分,下 页,上 页,返 回,g:转移电导,电压控
21、制的电流源(VCCS),电压控制的电压源(VCVS),:电压放大倍数,下 页,上 页,返 回,电流控制的电压源(CCVS),r:转移电阻,例,电路模型,下 页,上 页,返 回,3.受控源与独立源的比较,独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。,独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源是反映电路中某处的电压或电流对另一处的电压或电流的控制关系,在电路中不能作为“激励”。,下 页,上 页,返 回,例,求:电压u2,解,下 页,上 页,返 回,1.8 基尔霍夫定律,基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电
22、压定律(KVL)。它反映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。,下 页,上 页,返 回,1.几个名词,电路中通过同一电流的分支。,元件的连接点称为结点。,b=3,a,n=4,b,支路,电路中每一个两端元件就叫一条支路。,结点,b=5,下 页,上 页,或三条以上支路的连接点称为结点。,n=2,注意,两种定义分别用在不同的场合。,返 回,由支路组成的闭合路径。,两结点间的一条通路。由支路构成,对平面电路,其内部不含任何支路的回路称网孔。,l=3,3,路径,回路,网孔,网孔是回路,但回路不一定是网孔。,下 页,上 页,注
23、意,返 回,2.基尔霍夫电流定律(KCL),令流出为“+”,有:,例,在集总参数电路中,任意时刻,对任意结点流出(或流入)该结点电流的代数和等于零。,流进的电流等于流出的电流,下 页,上 页,返 回,例,三式相加得:,KCL可推广应用于电路中包围多个结点的任一闭合面。,下 页,上 页,表明,返 回,KCL是电荷守恒和电流连续性原理在电路中任意结点处的反映;,KCL是对结点处支路电流加的约束,与支路上接的是什么元件无关,与电路是线性还是非线性无关;,KCL方程是按电流参考方向列写的,与电流实际方向无关。,下 页,上 页,明确,返 回,3.基尔霍夫电压定律(KVL),下 页,上 页,标定各元件电压
24、参考方向,选定回路绕行方向,顺时针或逆时针.,在集总参数电路中,任一时刻,沿任一回路,所有支路电压的代数和恒等于零。,返 回,U1US1+U2+U3+U4+US4=0,U2+U3+U4+US4=U1+US1,或:,R1I1+R2I2R3I3+R4I4=US1US4,下 页,上 页,KVL也适用于电路中任一假想的回路。,注意,返 回,例,KVL的实质反映了电路遵从能量守恒定律;,KVL是对回路中的支路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,KVL方程是按电压参考方向列写,与电压实际方向无关。,下 页,上 页,明确,返 回,4.KCL、KVL小结:,KCL是对
25、支路电流的线性约束,KVL是对回路电压的线性约束。,KCL、KVL与组成支路的元件性质及参数无关。,KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)。,KCL、KVL只适用于集总参数的电路。,下 页,上 页,返 回,下 页,上 页,思考,返 回,两端接地后,以A为结点列KCL,求得UA=7/5v,i2=4/5A,i1=1A,下 页,上 页,例1,求电流 i,解,例2,解,求电压 u,返 回,下 页,上 页,例3,求电流 i,例4,求电压 u,解,解,要求,能熟练求解含源支路的电压和电流。,返 回,解,下 页,上 页,例5,求电流 I,例6,求电压 U,解,返 回,解,下 页,上 页,例7,求开路电压 U,返 回,解,选择参数可以得到电压和功率放大。,上 页,例8,求输出电压 U,返 回,