动物的发育门类体制特征的建立.ppt

上传人:小飞机 文档编号:6101457 上传时间:2023-09-24 格式:PPT 页数:154 大小:4.28MB
返回 下载 相关 举报
动物的发育门类体制特征的建立.ppt_第1页
第1页 / 共154页
动物的发育门类体制特征的建立.ppt_第2页
第2页 / 共154页
动物的发育门类体制特征的建立.ppt_第3页
第3页 / 共154页
动物的发育门类体制特征的建立.ppt_第4页
第4页 / 共154页
动物的发育门类体制特征的建立.ppt_第5页
第5页 / 共154页
点击查看更多>>
资源描述

《动物的发育门类体制特征的建立.ppt》由会员分享,可在线阅读,更多相关《动物的发育门类体制特征的建立.ppt(154页珍藏版)》请在三一办公上搜索。

1、胚胎的早期发育-门类体制特征的建立,门类体制特征的建立,1.不同动物,共同的特征比特异性的特征在发育中出现的要早。2.共同性低的特征在发育中来自共同性高的特征。3.对于一个给定的物种来说,在它向成体的发育过程中,与其他的动物的差异越来越大。4.高等动物的胚胎并不与低等动物成体相似,而是与低等动物的早期胚胎相似。,3.1 受精胚胎发育的启动,一、受精的专一性与唯一性,包括精子活化、趋向、穿卵膜、细胞融合等。二、精核进入卵细胞以后受精卵细胞的重组和触发胚胎发育程序的启动,包括雌雄原核融合、胞质重组、代谢启动和胚胎发育程序开始等。,3.1 受精胚胎发育的启动,受精的专一性动物的受精有着严格的物种特异

2、性。1、海胆的精卵识别 海胆精子发生顶体反应后释放顶体酶,使卵细胞外的胶膜降解,精子穿越胶膜,其突起与卵黄膜(vitelline membrane)相互识别,与之融合,然后与卵细胞膜融合,导致精核进入卵细胞中。,顶体突起,海胆精子的顶体反应过程,海胆精子顶体突起与卵子微绒毛的接触,海胆的精卵识别是由特异性结合蛋白(Bindin)所介导的。Bindin定位在精子的顶体突起上,具有种属特异性。卵子卵黄膜上存在Bindin的受体,也被分离纯化出来。,海胆精子顶体突起上Bindin的定位,海胆卵子表面的Bindin受体,哺乳动物精卵的特异性识别发生在卵细胞的透明带(zona pellucida)部分。

3、小鼠 透明带中含有ZP3 糖蛋白,它与ZP1、ZP2以网状的骨架结构存在于透明带中。ZP3能结合精子,并引发顶体反应。,哺乳动物的精卵识别,小鼠透明带丝状串珠样结构示意图,精子细胞膜上有三种受体:1.sp56(56kDa,半乳糖结合蛋白)-可与ZP3分子上的半 乳糖端部相结合。如果ZP3的一个半乳糖基发生丢失或改变,精子将无法与卵子结合。2.半乳糖基转移酶(GalTase)可与ZP3分子上的N-乙酰葡糖胺结合,使精子G蛋白激活并诱导顶体反应。3.P95(ZP受体激酶)(95kDa)一种跨膜蛋白,其外侧部分可与ZP3分子特异结合,而内侧部分具有酪氨酸激酶的功能。该酶被激活后,导致顶体反应。,ZP

4、3在小鼠精子与透明带的结合中的作用。,三、精子入卵的调控,1、雌雄配子的融合 精子通过与卵黄膜或透明带的相互作用,发生顶体反应,使和精子结合的卵黄膜或透明带被顶体反应释放的水解酶溶解,并在该位置进行精卵细胞膜的融合。雌雄配子的融合大多被限定在特定的区域内。,海胆精子入卵过程,海胆精子入卵过程,金色仓鼠精子入卵过程:A,精卵融合的扫描电镜照片 B,精子与透明带的结合 C,精子头部穿过透明带。,D,精子与卵子质膜的融合 E,精子顶体与带有微绒毛的卵子质膜融合的示意图,2、多精受精阻断的机制与皮层反应 许多精子都可以到达卵子的表面并与之吸附,但是通常只有一个精子能完成受精,称为单精入卵(monosp

5、ermy)。多个精子入卵受精称为多精入卵(polyspermy),将导致死亡活不正常的发育。生命发展了多种机制防止多倍的染色体组融合,最普通的办法是阻碍多精入卵。,海胆双精受精卵(dispermic egg)第一次卵裂的中期。,人类双精受精卵的第一次有丝分裂。,穿过透明带:,形成受精卵:,海胆阻碍多精入卵的作用方式 海胆卵子细胞膜去极化引起的快速的阻碍作用;卵子皮层颗粒的胞吐作用产生的一种较慢的阻碍作用;卵子细胞质降解额外精子的核酸或排出包含有额外精子核酸的细胞质。,1.快速阻碍多精入卵 卵膜中存在离子通道,卵膜的快速阻碍多精入卵作用是通过改变自身膜电位形成的。精子进入卵细胞触发细胞膜静息电位

6、迅速去极化,引起膜外精子与卵细胞识别和融合的障碍。如人为维持原有的膜电位,可诱导多精受精现象发生;如改变正常的初始膜电位,则会阻止卵细胞的受精。,海胆卵受精前后的膜电位变化,B:control 490 nM Na C:120 nM Na导致多精入卵的比率升高,降低卵外Na浓度导致多精受精比率的升高,2.皮层颗粒反应 多精受精快速阻碍机制中膜电位的变化时间非常短暂(1 min左右),不足以永久实现阻碍多精入卵。结合到卵黄膜的精子是通过皮层的小泡破裂,发生皮层反应被移除的;否则将导致多精入卵。,皮层由皮层颗粒组成,通常分布在没有微绒毛结构的卵膜下方。当精子进入卵子时,皮层颗粒与卵膜发生融合,颗粒内

7、容物被释放到卵膜和卵黄膜之间的区域卵黄周隙(perivitelline space),这些释放物中有几种蛋白质在皮层颗粒反应中发挥了重要的作用。,海胆皮层颗粒反应示意图,未受精卵(左)和受精卵(右)的皮层,皮质颗粒内含物中含有的蛋白质:1).蛋白水解酶可以使卵黄膜与质膜间的联系分离;剪除卵膜上bindin的受体及与之结合的精子。2).粘多糖:进入卵周隙吸水膨胀,使卵黄层向外隆起,形成受精膜(fertilization envelope)举起。,3).过氧化物酶:皮层颗粒分泌的过氧化物酶通过交联相邻蛋白质的酪氨酸残基使受精膜变硬。受精膜最先在精子入卵的位置形成,并向外扩张至整个卵细胞,从而阻止多

8、精入卵。4).透明质素(hyalin):在卵外形成透明质层(hyalin layer),它与卵裂中对分裂球的支持作用有关。卵细胞质膜突起的微绒毛深入到其基部。,海胆受精膜的形成及多余精子的移除,哺乳动物不形成受精膜,但皮质颗粒中释放的酶对透明带中的精子受体分子进行修饰,使之丧失与精子结合的能力,因此,称为透明带反应。,(半乳糖基转移酶(GalTase)可与ZP3分子上的N-乙酰葡糖胺结合,使精子G蛋白激活并诱导顶体反应。卵激活时皮质颗粒释放出来的N-乙酰葡糖酶能对ZP3上的GalTase结合位点进行修饰,由此阻断透明带外围的精子与受精卵结合。),3、钙的作用 皮层颗粒反应的作用机制与顶体反应基

9、本相似,Ca2作为细胞内信使发挥了及其重要的作用。研究证明,启动皮层颗粒反应的钙主要储存在卵细胞的内质网中,而不是卵外钙离子的内流。卵细胞内的信号分子三磷酸肌醇IP3激活Ca的释放,而IP3的产生是与GTP结合蛋白或酪氨酸激酶相关的。,海胆卵细胞皮层颗粒周围的内质网,荧光抗体染色显示,钙离子释放通道位于皮层的内质网中。,海胆卵受精时释放的钙波从精子入卵点开始跨越整个卵,磷酸肌醇(inocitol phosphates)在钙离子释放过程中的作用,四、卵子的激活机制(受精卵的代谢启动)未受精的卵子是惰性的,细胞的呼吸活动、RNA的转录和蛋白质的合成处于或几乎处于零水平。只有受精的刺激才能唤醒其代谢

10、的活跃进行。这一活化过程分为两个阶段:一、早期反应(应答):指从精卵接触到发生皮质反应的数秒钟内所发生的事件。二、晚期反应(应答):在受精开始后数分钟内发生的事件。,Model of possible pathway of egg activation in the sea urchin.,受精后利用卵细胞质中储存的mRNA迅速合成大量的蛋白质,海胆发育的最初几个小时内,多聚核糖体的比例迅速增加,五、遗传物质的融合1.雌雄原核的形成及融合单倍体的精子核进入卵细胞后,解凝聚形成雄原核(male pronucleus),卵细胞核则形成雌原核(female pronucleus)。精核形成雄性原核的

11、过程受到卵子的严格控制。精子入卵时线粒体与鞭毛在卵细胞内降解,因此线粒体基因一般认为是母源性的;但中心体是父源性的。,海胆雌雄原核的融合 海胆雄原核形成后旋转180,其中心体位于雌、雄原核之间,装配成星体,连接并牵动雄原核与雌原核相互靠近,最后融合形成合子核(zygote nucleus)。,海胆雌雄原核的迁移,中心体发出的微管形成星光,连接并牵动雄原核与雌原核相互靠近,海胆雌雄原核的融合,哺乳动物雌雄原核的融合 哺乳动物精子入卵后,在卵母细胞胞质中谷胱甘肽的作用下精子染色体解凝聚。随着卵母细胞完成第二次减数分裂,雄原核增大,中心体产生星光,并向雌、性原核的方向迁移。雌雄原核彼此靠拢,在迁移过

12、程中复制DNA。两原核相遇后,核膜解体,染色质浓缩成染色体,定位于纺锤体上。因此,在合子中观察不到真正的二倍体核,两细胞期才可看见。,人类受精过程中雌雄原核的运动,A:精子入卵,雄原核膨大,精子的尾在卵中;B:雌雄原核并排;C:2细胞期,两个细胞中的核清晰可见。,2.哺乳动物雌雄原核的不均等性 形成合子的雌雄原核所携带的单倍体基因组并不等同。一个尚未被了解的生物学进程选择性地沉默父本或母本来源的等位基因,即印记。目前已有60多个哺乳动物的印记基因得到克隆,这些基因在发育过程中起着重要的作用。粪蝇父本的基因组是沉默的,仅表达来自母本的基因。,Imprinting 基因:在卵子发生或精子发生过程中

13、被打上了不同印记的基因。由于印记不同,来源于雌核和雄核基因的表达模式也不同,即在胚胎发育过程中,有些基因仅来自于雄性的表达,而另一些基因仅来自于雌性的表达。因此只有来自于精子和卵子的二倍体才能正常发育,而仅来自于雌核或雄核的二倍体胚胎则要在发育过程中夭亡。,正常对照(左)和两个雌原核发育成的胚胎(右),3.细胞质成分在受精后的的重组 卵细胞受精后引起卵细胞成分的重新排比和分配称为卵细胞质重排,这种重排对于以后发育过程中细胞的分化至关重要。在卵裂过程中,胞质中含有的形态形成决定子被分配到特定的细胞中去,最终导致特定的基因被激活,从而使不同的细胞获得不同的特性。,背囊动物Styela partit

14、e减数分裂中,核破裂释放出一种清亮物质,集中在动物极。受精5min后,清亮层与黄色皮质层(含脂肪)向植物极迁移。随着雄原核向赤道方向迁移,脂包涵体和清亮物质也随之迁移。清亮和黄色胞质的最终位置将分别形成间充质和中胚层。,两栖类的灰色新月 精子入卵后,皮层向精子进入的方向旋转大约30,在动物极皮层含大量色素而内层含有少量色素的物种中,这一胞质不同层次的相对运动形成了一个在精子进入点对面的新月形的灰色区域,称为灰色新月。,4、卵裂的准备 卵裂启动的机制因物种的不同而不同,主要依赖于受精时减数分裂所处的时期。胞内Ca2浓度的增加启动了细胞分裂所需要的细胞器。第一次卵裂的位置不是随机的,而是由精子的进

15、入点和卵质的旋转方向所决定的。,植物极半球的微管沿将来背腹轴的方向平行排列,3.2 囊胚-从单细胞到多细胞,受精卵经过一系列的细胞分裂将体积极大的卵子细胞质分割成许多较小的、有核的细胞,形成一个多细胞生物体的过程称为卵裂(cleavage)。处于卵裂期的细胞叫做卵裂球(blastomere)桑葚胚。不同卵裂球之间已经开始产生差异,并最终发育成不同类型的细胞。,蛙的早期卵裂。A 第一次卵裂,B 第二次卵裂,C 第四次卵裂,动物极和植物极细胞出现差异。,小鼠桑椹胚的压缩现象 8细胞时期,小鼠细胞表面光滑,微绒毛均匀分布,压缩后微绒毛仅分布于细胞的外表面,细胞之间的联系加强了。,对大多数物种而言(尤

16、其是无脊椎动物),细胞分裂的速度及卵裂球的相互位置主要是由母本储存在卵母细胞中的蛋白质和mRNA控制的。通过有丝分裂分配到各卵裂球中的合子基因组,在早期卵裂胚胎中并不起作用,即使用化学物质抑制转录,早期胚胎也能正常发育。,线虫受精卵内的胞质决定子的不对称分布决定了卵裂的不对称性,不对称的卵裂将形成不同发育命运的分裂球。,卵裂时,细胞质体积并没有增加,合子细胞质不断地被二等分分到越来越小的细胞中。细胞在两次分裂之间没有生长期,卵裂期细胞核以极高的速度分裂,直到原肠后期细胞分裂速度才显著放慢。,蛙胚早期发育的卵裂速度,在多数生物的胚胎中,核质比值的成倍增加是决定某些基因定时开始转录的因素。非洲爪蟾

17、的胚胎,直到第12次卵裂,合子的基因组才开始转录(中期囊胚转换)。胚胎细胞中染色质含量愈高,这种转化(合子型基因的打开)发生愈早。如果核内染色质是正常情况的2倍,这种转化将提前一个周期发生。因此新合成的染色质能感受卵内一些因子的量的变化。,在多数动物的发育过程中,受精卵立即进入快速分裂和细胞增殖的阶段,首先形成一个多细胞的团聚体,称为桑椹胚(morula)。之后,伴随细胞数目的增加,胚体中空而形成一个囊状结构,称为囊胚(blastula)。从受精卵到囊胚形成是动物早期发育的一个重要阶段。,3.卵裂的机制,体细胞和动物早期分裂球的细胞分裂周期对照,果蝇胚胎发育过程中细胞周期调控的发育变化。,斑马

18、鱼囊胚细胞的命运图,人类同卵双胞胎的形成与胚胎外膜相关的时序示意图。A,滋养层形成之前;B,滋养层形成之后,羊膜形成之前;C,羊膜形成之后。,压缩(campaction)为哺乳动物发育中第一次分化(滋养层与内细胞团的分离)的外部条件。相邻细胞表面之间的相互作用是导致胚胎压缩的原因。有些专一性的细胞表面分子在胚胎压缩过程中扮演着重要的角色。其中,在2细胞期合成的糖蛋白E-cadherin主要集中于卵裂球相互接触的表面上。抗E-cadherin的抗体能使桑椹胚细胞散开,该糖蛋白的糖链部分是发挥功能所必需的。,抗E-cadherin的抗体能够阻止胚胎压缩现象的发生,未压缩的和压缩的8细胞小鼠胚胎的比

19、较,哺乳动物受精卵在体外进行的卵裂 ABC 2,4,8细胞期;D 压缩的8细胞期;E 16细胞桑椹胚;F 32细胞囊胚期,3.3 原肠胚-三胚层建立,原肠作用(gastrulation)是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。原肠形成期间,囊胚细胞彼此之间的位置发生变动,重新占有新的位置,并形成由三胚层细胞构成的胚胎结构。尽管整个动物界原肠作用方式变化多样,但总体可概括为五种细胞运动机制,即外包、内陷、内卷、内移和分层。,原肠作用前的海胆晚期囊胚,植物极变扁平。,初级间质细胞的内移植物极板中央来源于小分裂球的细胞不断伸出和收缩线状伪足,脱离表面单层细胞,进入囊

20、胚腔,称为初级间质细胞。,早期原肠内陷初级间质细胞在囊胚腔内迁移的过程中,仍然留在植物极板上的细胞移动填补由初级间质细胞内移而形成的空隙,植物极板进一步变扁平。之后,植物极板向内弯曲,内陷。当植物极板内陷深及囊胚腔的1/41/2时,内陷突然停止。所陷入的部分称为原肠(archenteron or primitive gut),而原肠在植物极的开口称为胚孔(blastopore)。,晚期原肠内陷早期原肠内陷完成之后,经过短暂停歇,原肠大幅度拉长,短粗的原肠变成又细又长的管状结构。在此期间没有新细胞形成,原肠的拉长过程是通过细胞重排实现的,原肠周长内细胞数目大为减少。,海胆原肠作用的整个历程。发育

21、温度为25度。,海胆的长腕幼虫,2.果蝇的原肠作用 原肠作用开始于腹部预置中胚层的内陷。,羊浆膜的作用可能是分泌信号分子,指导germ band的收缩,它最后将退化。,4.两栖类的原肠作用,两栖类的原肠作用是实验胚胎学中最古老也是最新兴的一个领域。两栖类囊胚与棘皮动物和鱼类的囊胚所面临的基本任务完全相同,也就是把终将形成内胚层器官的细胞拖入胚胎内部,把终将形成外胚层的细胞置于胚胎的四周,而把终将形成中胚层的细胞置于外胚层和内胚层之间适当的位置。,两栖类胚胎活体染色。A,用活体染料标记胚胎表特定细胞;B-D,标记细胞的迁移运动;E,将蝾螈胚胎沿中线剖开,示标记细胞在胚胎内部的分布。,两栖类原肠作

22、用时的细胞运动非洲爪蟾的中胚层前体只存在于深层细胞中,位于赤道区域表面细胞下面,而外胚层和内胚层则来源于表面的表层细胞中。蛙类原肠作用首先是从将来胚胎的背部,即刚好位于赤道下方的灰色新月区开始的。,非洲爪蟾囊胚外层细胞(A)和内部细胞(B)发育命运图谱。,灰色新月区的预定内胚层细胞内陷,形成狭缝状胚孔(slit-like blastopore),内陷细胞称为瓶状细胞(bottle cell),它们沿最初的原肠排列。蛙类囊胚细胞内陷引发原肠形成。但是,蛙类的原肠作用并不是在最靠近植物极处开始内陷,而是在动物半球和植物半球汇合的赤道附近,即所谓的边缘区(marginal zone)开始内陷。,爪蟾

23、的晚期囊胚,示边缘区被内胚层细胞覆盖。,胚孔处形成瓶状细胞,移植的胚孔背唇细胞将在内胚层细胞层上下陷(sink),形成一个胚孔狭缝。瓶状细胞的内陷启动原肠作用。,植物极背方细胞对原肠作用的启动具有重要作用。,瓶状细胞的收缩拉动边缘区细胞向植物极运动,同时将植物极的内胚层细胞推向胚胎的内部。边缘区细胞的运动导致外胚层细胞向植物极外包,预定前端中胚层细胞沿囊胚腔内表面延伸。,胚孔形成和原肠作用过程中爪蟾背部区域细胞的运动,爪蟾早期胚孔背唇的表面观,示动、植物极细胞大小的差异。,动物极细胞通过胚孔背唇内卷区域表面的特写,通过机械方法(如离心)人为地改变皮层细胞质和皮层下细胞质的空间关系,将可以使胚胎

24、在精子入卵点的同一侧开启原肠作用。将精子决定的细胞质旋转与人工诱导的细胞质旋转相结合,就可能获得两个原肠作用起点,最终形成联体双胞胎蝌蚪(Black and Gerhart,1985)。,人工方法诱导的两个原肠作用开启点。,两个原肠作用开启点导致联体双胞胎蝌蚪的形成。,原肠作用诱导因子是通过动物极细胞质和植物极细胞质两者之间的相互作用而产生的。开启原肠作用的诱导因子原来位于植物极细胞的深层细胞质中。移植预定背部的植物极细胞能够让植物极经紫外线照射的胚胎正常发育,同时将预定背部的植物极细胞移植到预定腹部的部位,也能够诱导形成次生胚轴(secondary axis)。,预定背唇区域下方植物极细胞移

25、植实验,背部最靠近植物极的裂球能够诱导次生原肠作用,并形成次生胚轴。,原肠作用的下一个时期包括边缘区细胞的内卷以及动物半球细胞的外包和向胚孔处集中。迁移中的缘区细胞到达胚孔的背唇时,转向内部沿着外层细胞的内表面运动,因此构成背唇的细胞在不断更新。最初构成背唇的细胞为内陷形成原肠前缘的瓶状细胞,它们随后发育为前肠咽部的细胞。,内卷边缘区细胞沿外层细胞的内表面向动物极运动,示构成胚孔背唇的细胞的不断更新。,随着瓶状细胞进入胚胎内部,背唇被后来内卷进入胚胎发育为头部中胚层前体的细胞代替。接下来,由胚孔背唇内卷进入胚胎的细胞为脊索中胚层细胞,它们将形成脊索。脊索是一个临时性中胚层脊柱(backbone

26、),对诱导神经系统的分化起重要的作用。,非洲爪蟾原肠作用期间Brachyury基因的表达,示预定中胚层细胞的集中和延伸。,随着背唇、侧唇和腹唇的连续形成,胚孔区域的变化。,通过胚孔进入胚胎内部的细胞的运动,最终,卵黄栓也被包入内部。至此,所有内胚层细胞都已进入胚胎的内部,外胚层细胞包被在胚胎的表面,而中胚层细胞则位于内胚层和中胚层之间。非洲爪蟾的原肠作用是数个事件和谐的组合,结果是把内中外三个胚层细胞置于适当的位置,为它们分化为不同的器官做准备。,两栖类原肠作用时细胞的运动。,两栖类原肠作用总结:1.边缘区瓶状细胞在准确的时间和位置内陷。2.边缘区细胞通过胚唇进行内卷形成原肠。3.内卷的中胚层

27、细胞沿胚孔顶壁内表面迁移。4.预定脊索中胚层在胚胎背部集中延伸5.预定外胚层细胞通过细胞分裂和数层细胞合并为单层细胞而向植物极下包。,Nieukoop中心形成背腹轴和前后轴是在受精过程中由受精卵细胞质隔离决定的。受精后由于皮层细胞质的转动(cortical rotation),使得卵子表面的动植物极轴与细胞质内部的动植物极轴两者相差30o,这样便形成一个新的对称状态。受精卵已具备了背腹轴,变成两侧对称结构,可以区分出左右侧了。,A,受精后,质膜下方的皮层(cortical layer)向着精子入卵点的方向转动。B,皮层转动的结果是Nieukoop中心或信号中心的形成,这样就确定了胚胎的背方。,

28、皮层转动的结果造成爪蟾受精卵呈两侧对称。,Nieukoop中心对正常发育是必需的,背方部分含有Nieukoop中心,形成一个背部化的胚胎,但缺少肠;腹方部分没有Nieukoop中心,形成一腹部化的胚胎,缺少背部和头部结构。,移植的两栖类胚孔背唇细胞将在内胚层细胞层上下陷(sink),形成一个胚孔沟。瓶状细胞的内陷启动原肠作用。,5.鸟类的原肠作用,一、鸟类原肠作用概述鸟类行不完全的盘状卵裂,胚胎经过卵裂在大量的卵黄上形成一个胚盘(blastodisk)。胚盘下方“惰性”的卵黄对上面细胞的运动施以严格限制。,由动物极(胚胎将来的背部)观察的鸡卵的盘状卵裂,1.下胚层和上胚层的形成鸟类胚盘中央细胞

29、被胚下腔(subgerminal cavity)和卵黄分开,看起来透明,称为明区(area pellucida)。明区边缘细胞和卵黄接触看起来不透明,称为暗区(area opaque)。上胚层某些细胞单个的迁移到胚下腔中,形成初级下胚层(primary hypoblast)。胚盘后缘有一层细胞向前迁移和初级下胚层汇合,形成次级下胚层(secondary hypoblast)。,鸡胚双层囊胚的形成,由上胚层和下胚层组成的双层囊胚在暗区边缘连接在一起,两层之间的空腔即为囊胚腔。鸟类胚胎命运图谱仅局限于上胚层,胚胎本身和大量胚胎外膜都是由上胚层所产生。下胚层对正在发育的卵的本身并没有任何实质性的贡献

30、。下胚层细胞只形成部分胚胎外膜,尤其是卵黄囊和连接卵黄的基柄。,原条的形成鸟类的原条(primitive streak)首先见于胚胎的后端上胚层细胞的加厚处。这种加厚是来自上胚层的中胚层细胞内移进入囊胚腔以及来自上胚层后端两侧细胞向中央迁移所致。随着加厚部分不断变窄,它不断向前运动,并收缩形成清晰的原条。原条延伸至明区长度60至70处,成为胚胎前后轴的标志。,鸡胚原条形成时细胞的运动。A,34h;B,56h;C,78;D,1012h,伴随着细胞集中形成原条,在原条中出现一凹陷,成为原沟。原沟与两栖类胚孔的作用相似,迁移的细胞通过原沟进入囊胚腔。在原条的前端是一个细胞加厚区叫原节或亨氏节(Hen

31、sens node)。亨氏节的中央有一个烟囱状的凹陷,叫原窝(primitive pit)。细胞可以通过原窝进入囊胚腔。亨氏节在功能上相当于两栖类胚孔的背唇。,移植亨氏节能够诱导一个次生胚胎的形成。,原条一旦形成,上胚层细胞便开始向原条边缘迁移,进入囊胚腔内,组成原条的细胞也在不断地变化。进入鸟类囊胚腔的细胞以单个细胞为单位,内移的细胞并不形成紧密联系的细胞层,只形成松散联系的间质细胞。随着细胞进入原条,原条向胚胎未来头部区域延长。通过亨氏节进入囊胚腔的细胞向前迁移,形成前肠、头部中胚层和脊索;通过原条两侧部分进入囊胚腔的细胞形成大部分内胚层和中胚层组织。,A,进入囊胚腔的细胞顶端伸长形成瓶状

32、细胞;B,鸡胚原肠作用立体图解,示原条、正在迁移的细胞和原有两胚层之间的关系。,上图,1516h;原沟和亨氏节的形成。下图,1922h;内移的细胞向上推举上胚层前端中线区域,形成头突(head process)。,通过原条的细胞的迁移:内胚层和中胚层的形成最早通过原条迁移的细胞是预定发育成前肠的细胞,这一点与两栖类相似。下胚层细胞构成的区域即生殖新月不形成任何胚胎本身结构,但含有生殖细胞前体,以后通过血管迁移到生殖腺中。通过亨氏节进入囊胚的细胞也向前迁移,保持在内胚层和上胚层之间,将来形成头部中胚层和脊索中胚层细胞。,随后在中胚层细胞继续内移的同时,原条开始回缩,使大致位于明区中央的亨氏节向后

33、推移。在原条回缩的痕迹上出现了胚胎背轴和头突。随着亨氏节继续回缩,脊索后端部分开始形成。最终亨氏节回缩到最后端区域,将来形成肛门。至此,上胚层完全由预定外胚层构成。尽管中胚层细胞还要继续向内迁移很长时间,但大部分预定内胚层细胞已进入胚胎内部。,2428h鸡胚的原肠作用。A,延伸到全长的原条,24h;B,2体节时期,25h;C,4体节时期,27和;D,原条回缩到胚胎的尾部,28h。E,原条回缩,脊索沿着原条的痕迹形成。,伴随原条回缩,脊索和体节逐渐形成。上图,2324h;下图,4体节时期。,当预定中胚层和内胚层细胞向囊胚腔内运动时,预定外胚层细胞还在分裂,并成为胚胎最上层唯一的细胞群。预定外胚层

34、细胞迁移离开胚盘,通过下包包被卵黄。鸟类原肠作用结束的时候,外胚层已将卵黄包被起来,内胚层已经取代了下胚层,而中胚层则已经迁移到内外两胚层之间的位置。,6.哺乳类的原肠作用,哺乳类发育模式和鸟类以及爬行类相似。哺乳类的卵子为少黄卵,但其胚胎仍保留着为适应多黄卵而进化形成的鸟类和爬行类胚胎的原肠作用方式。哺乳类的内细胞团可以看作卵黄球顶部的胚盘,它按照与其祖先爬行类相似的模式发育。,哺乳动物在母体内发育,其胚胎直接从母体获取营养,而不是从卵子所储备的卵黄获取营养。哺乳动物这一进化导致母体解剖结构发生巨大变化(输卵管膨大形成子宫)以及专司吸收母体营养的胎儿器官胎盘的出现。胎盘主要由胚胎滋养层细胞和

35、内细胞团形成的中胚层细胞发育而来。,人类胚胎从受精到植入的发育过程,哺乳动物胚泡植入子宫的过程,原肠作用前的胚泡,示内细胞团和滋养层细胞。,内细胞团内最早的细胞隔离是下胚层(原始内胚层)的形成。下胚层排列在囊胚腔周围,形成卵黄囊内胚层。卵黄囊内胚层不参与新生机体的任何组织。位于下胚层之上的内细胞团称为上胚层。上胚层细胞被缝隙隔开;缝隙最后连接起来,把胚胎上胚层和形成羊膜腔壁的上胚层(羊膜外胚层)隔开。羊膜腔一旦形成,内部便充满羊水。,下胚层细胞从内细胞团中分离出来形成卵黄囊,滋养层细胞分裂形成细胞滋养层和合胞体滋养层;细胞滋养层形成绒毛,合胞体滋养层融入子宫组织。,上胚层分裂形成羊膜外胚层(包

36、绕羊膜腔)和胚胎上胚层,哺乳类胚胎由胚胎上胚层形成。,胚外内胚层形成卵黄囊,哺乳类胚胎上胚层包含所有形成胚胎本身的细胞。和鸡胚一样,哺乳动物的中胚层和内胚层细胞同样通过原条迁移。当它们进入原条时,上胚层细胞停止表达将细胞凝集在一起的E-细胞选择蛋白,并各自独立迁移。哺乳动物脊索也是通过亨氏节迁移的细胞形成,但脊索形成方式和鸟类不同。,人类原肠作用过程中,羊膜结构的形成和细胞的运动。,形成小鼠脊索的细胞整合到原肠内胚层中,这些细胞构成一条从亨氏节向吻端延伸的细胞带。该细胞带由小而具有纤毛的细胞组成,它们向中线处集中,再从原肠顶壁向背部隆起折叠形成脊索。哺乳类胚胎外胚层位于已充分延伸的原条的前端,和鸡胚中外胚层的位置相似。因此,哺乳动物胚胎再上胚层时期,细胞系尚未彼此分离。,小鼠脊索的形成 A,预定脊索细胞为小而具有纤毛的细胞,位于背中线上,两侧是预定形成原肠的较大的内胚层细胞。B,预定脊索中胚层细胞向背部折叠形成脊索。,人类和猕猴胚胎组织衍生物示意图,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号