《数学上册三角形复习课件.ppt》由会员分享,可在线阅读,更多相关《数学上册三角形复习课件.ppt(29页珍藏版)》请在三一办公上搜索。
1、第十一章 三角形复习课,三角形,与三角形有关的线段,三角形内角和,三角形外角和,三角形知识结构图,三角形的边,高线,中线,角平分线,与三角形有关的角,内角与外角关系,三角形的分类,多边形,定义,多边形的内外角和,镶嵌,1.三角形的三边关系:,(1)三角形两边的和大于第三边,2.判断三条已知线段a、b、c能否 组成三角形.,当a最长,且有b+ca时,就可构成三角形.,3.确定三角形第三边的取值范围:,两边之差第三边两边之和.,(2)三角形两边的差小于第三边,知识要点,1、下列条件中能组成三角形的是()A、5cm,13cm,7cm B、3cm,5cm,9cm C、14cm,9cm,6cmD、5cm
2、,6cm,11cm,C,2、三角形的两边为7cm和5cm,则第三边x的 范围是_;,2cmX 12cm,练一练,3、等腰三角形一边的长是5,另一边的长是8,则它的周长是。4、一个三角形的两边长分别是2cm 和9cm,第三边的长为奇数,则第三边的长为_.,18或21,从三角形的一个顶点向它的对边所在直线作垂线,_的线段叫做三角形的高线.,三角形的高线定义:,顶点和垂足之间,4 三角形的主要线段,三角形角平分线的定义:,顶点与交点,三角形的中线定义,顶点与它对边中点,5 三角形的三条高线(或高线所在直线)交于一点,锐角三角形三条高线交于三角形内部一点,直角三角形三条高线交于直角顶点,,钝角三角形三
3、条高线所在直线交于三角形外部一点。,6 三角形的三条中线交于三角形内部一点。,7 三角形的三条角平分线交于三角形 内部一点。,5、如图,分别是ABC的高和角平线,则=_度.,看你会不会,7.三角形的分类,锐角三角形,三角形,钝角三角形,(1)按角分,直角三角形,斜三角形,(2)按边分,腰和底不等的等腰三角形,三角形,等腰三角形,等边三角形,不等边三角形,5.如右图,AD是BC边上的高,BE是 ABD的角平分线,1=40,2=30,则C=_BED=。,65,60,6.直角三角形的两个锐角相等,则每一个锐角等于_度。,45,5.三角形木架的形状不会改变,而四边形木架的形状会改变.这就是说,三角形具
4、有稳定性,而四边形没有稳定性。,6.三角形内角和定理,三角形的内角和等于1800,直角三角形的两个锐角互余。,7.三角形外角和定理,三角形的外角和等于3600,7 木工师傅做完门框后,为防止变形,通常在角上钉一斜条,根据是;,三角形具有稳定性,三角形的一个外角等于与它不相邻的两个内角的和。,8.三角形的外角与内角的关系,三角形的一个外角大于与它不相邻的任何一个内角。,8.在ABC中,(1)B=100,A=C,则C=;(2)2A=B+C,则A=。,9.如图,_是ACD的外角,ADB=115,CAD=80则C=_.,40,60,35,ADB,练一练,10、在ABC中,A是B的2倍,C比A+B还大3
5、0,则C的外角为_度,这个三角形是_三角形,75,钝角,11、如图,已知:AD是ABC的中线,ABC的面积为50cm2,则ABD的面积是_.,25cm2,9、n边形的内角和等于(n2)180.多边形的外角和都等于360.,我们通过把多边形划分为若干个三角形,用三角形内角和去求多边形内角和,从而得到多边形的内角和公式为()180。这种化未知为已知的转化方法,必须在学习中逐渐掌握。由于多边形外角和为360,与边数无关,所以常把多边形内角和的问题转化为外角和来处理。,n-3,n-2,31800,41800,(n-2)1800,1,2,3,2,3,4,21800,3600,3600,3600,3600
6、,答:15边形的内角和是23400,求15边形内角和的度数。,多边形的内角和,n边形的内角和为(n-2)1800,解:(n-2)1800,=(15-2)1800,=23400,13 一个正多边形每一个内角都是120o,这个多边形是()A、正四边形B、正五边形 C、正六边形D、正七边形,C,14.如图,已知:AD是ABC,的中线,ABC的面积为,求,ABD的面积,A,B,C,D,E,1,D,C,A,B,三角形三个内角的度数分别是(x+y)o,(x-y)o,xo,且xy0,则该三角形有一个内角为()A、30OB、45OC、60OD、90O把14cm长的细铁丝截成三段,围成不等边三角形,并且使三边长
7、均为整数,那么()A、只有一种截法B、只有两种截法C、有三种截法D、有四种截法等腰三角形的腰长为a,底为X,则X的取值范围是()A、0X2aB、0XaC、0Xa/2D、0X2a,一、选择题,C,C,A,评价练习,一个正多边形每一个内角都是120o,这个多边形是()A、正四边形B、正五边形 C、正六边形D、正七边形一个多边形木板,截去一个三角形后(截线不经过顶点),得到新多边形内角和为2160o,则原多边形的边数为()A、13条B、14条C、15条D、16条下列说法中,错误的是()A、一个三角形中至少有一个角不大于60O;B、有一个外角是锐角的三角形是钝角三角形;C、三角形的外角中必有两个角是钝
8、角;D、锐角三角形中两锐角的和必然小于60O;,C,A,D,二、填空题,一个三角形的三边长是整数,周长为5,则最小边为;木工师傅做完门框后,为防止变形,通常在角上钉一斜条,根据是;小明绕五边形各边走一圈,他共转了度。两多边形的边数分别是m,n条,且各多边形内角相等,又满足1/m+1/n=1/4,则各取一外角的和为;下列正多边形(1)正三角形(2)正方形(3)正五边形(4)正六边形,其中用一种正多边形能镶嵌成平面图案的是;,1,三角形具有稳定性,360,90O,(1)、(2)、(4),评价练习,1、如图:D是ABC中BC边上一点,试说明2ADABBCAC。,A,C,D,B,友情提示:由ACCDAD与ABBDAD相加可得。,拓展思维,2、有一六边形,截去一三角形,内角和会发生怎样变化?请画图说明。,内角和减少180O,内角和不变,内角和增加180O,解:由三角形两边之和大于第三边,两边之差小于第三边得:8-3a8+3,5 a11又第三边长为奇数,第三条边长为 7cm、9cm。,3、已知两条线段的长分别是3cm、8cm,要想拼成一个三角形,且第三条线段a的 长为奇数,问第三条线段应取多少长?,4、已知一个三角形的三边长3、a+2、8,则a的取值范围是。,3a9,