《高一数学递推数列的通项公式.ppt》由会员分享,可在线阅读,更多相关《高一数学递推数列的通项公式.ppt(15页珍藏版)》请在三一办公上搜索。
高一数学必修五第二章 数列,数列求和,复习巩固,1.公式法;,2.分组求和法;,3.裂项相消法;,4.倒序相加法;,5.错位相减法;,6.并项求和:,一个数列的前n项和中,可两两结合求解,则称之为并项求和,若通项形如an=(1)nf(n)的摆动数列求和,可用此法。,求数列Sn=12-22+32-42+(1)n-1n2,7.通项化归:,先将通项公式进行化简,再进行求和。,求数列1,1+2,1+2+3,1+2+3+4,的前n项和。,高一数学必修五第二章 数列,递推数列通项公式的求法,公式法,累加法,累 乘 法,辅助数列法,一般地,已知数列的递推公式为an+1=pan+q,其中p,q为常数,求通项公式,可以转化为等比数列求解。,练习1:已知数列an中,求an的通项公式.,(倒数法),(平方法),练习2:在数列an中,a1=2,且求an的通项公式,练习3:已知数列an满足:a11,且an(12an1)an1(n2),求数列an的通项公式.,综合分析法,已知Sn与an、n间的等量关系,求an的问题,方法2:转化为Sn的递推关系,先求出Sn与 n之间的关系,再求an的通项公式;,方法1:利用 转化为 an的递推关系,再求其通项公式;,归纳法,7、作业布置:,(1)课本第68页A组711;,(2)学海第11次课时。,