《4.4.1参数方程的意义.ppt》由会员分享,可在线阅读,更多相关《4.4.1参数方程的意义.ppt(12页珍藏版)》请在三一办公上搜索。
1、参数方程的意义,1、参数方程的概念:,如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?,提示:即求飞行员在离救援点的水平距离多远时,开始投放物资?,1、参数方程的概念:,物资投出机舱后,它的运动由下列两种运动合成:,(1)沿ox作初速为100m/s的匀速直线运动;(2)沿oy反方向作自由落体运动。,如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?,1、参数方程的概念:,
2、如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行.为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?,(2),并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,那么方程(2)就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。,关于参数几点说明:参数是联系变数x,y的桥梁,参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。2.同一曲线选取参数不同,曲线参数方程形式也不一样3.在实际问题中要确定参数的取值范围,1、
3、参数方程的概念:,一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数,数学运用,S,T,例2:已知曲线C的参数方程是(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。,2、方程 所表示的曲线上一点的坐标是(),练习1,A、(2,7);B、C、D、(1,0),1、曲线 与x轴的交点坐标是()A、(1,4);B、C、D、,B,已知曲线C的参数方程是 点M(5,4)在该 曲线上.(1)求常数a.(2)求曲线C的普通方程.,解:,(1)由题意可知:,1+2t=5,at2=4,解得:,a=1,t=2,a=1,(2)由
4、已知及(1)可得,曲线C的方程为:,由第一个方程得:,代入第二个方程得:,练习2:,动点M作等速直线运动,它在x轴和y轴方向的速度分别为5和12,运动开始时位于点P(1,2),求点M的轨迹参数方程。,解:设动点M(x,y)运动时间为t,依题意,得,所以,点M的轨迹参数方程为,思考题:,(1)建立直角坐标系,设曲线上任一点P坐标为(x,y);(2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式;(4)证明这个参数方程就是所由于的曲线的方程.,参数方程求法:,小结:,并且对于t的每一个允许值,由方程组(2)所确定的点M(x,y)都在这条曲线上,,那么方程(2)就叫做这条曲线的参数方程,系变数x,y的变数t叫做参变数,简称参数。,