建立数学模型教学.ppt

上传人:牧羊曲112 文档编号:6280567 上传时间:2023-10-13 格式:PPT 页数:29 大小:562KB
返回 下载 相关 举报
建立数学模型教学.ppt_第1页
第1页 / 共29页
建立数学模型教学.ppt_第2页
第2页 / 共29页
建立数学模型教学.ppt_第3页
第3页 / 共29页
建立数学模型教学.ppt_第4页
第4页 / 共29页
建立数学模型教学.ppt_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《建立数学模型教学.ppt》由会员分享,可在线阅读,更多相关《建立数学模型教学.ppt(29页珍藏版)》请在三一办公上搜索。

1、第一章 建立数学模型,1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模,玩具、照片、飞机、火箭模型,实物模型,水箱中的舰艇、风洞中的飞机,物理模型,地图、电路图、分子结构图,符号模型,模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物,模型集中反映了原型中人们需要的那一部分特征,1.1 从现实对象到数学模型,我们常见的模型,你碰到过的数学模型“航行问题”,用 x 表示船速,y 表示水速,列出方程:,答:船速每小时20千米/小时.,甲乙两地相距750千米,船从甲到乙

2、顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?,x=20y=5,航行问题建立数学模型的基本步骤,作出简化假设(船速、水速为常数);,用符号表示有关量(x,y表示船速和水速);,用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);,求解得到数学解答(x=20,y=5);,回答原问题(船速每小时20千米/小时)。,数学模型(Mathematical Model)和数学建模(Mathematical Modeling),对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。,建立数学模型的全过程(包

3、括表述、求解、解释、检验等),数学模型,数学建模,1.2 数学建模的重要意义,电子计算机的出现及飞速发展;,数学以空前的广度和深度向一切领域渗透。,数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。,在一般工程技术领域数学建模仍然大有用武之地;,在高新技术领域数学建模几乎是必不可少的工具;,数学进入一些新领域,为数学建模开辟了许多处女地。,数学建模的具体应用,分析与设计,预报与决策,控制与优化,规划与管理,数学建模,计算机技术,知识经济,1.3 数学建模示例,1.3.1 椅子能在不平的地面上放稳吗,问题分析,模型假设,通常 三只脚着地,放稳 四只脚着地,四条腿一样长,椅脚与地面

4、点接触,四脚连线呈正方形;,地面高度连续变化,可视为数学上的连续面;,地面相对平坦,使椅子在任意位置至少三只脚同时着地。,模型构成,用数学语言把椅子位置和四只脚着地的关系表示出来,椅子位置,利用正方形(椅脚连线)的对称性,用(对角线与 x 轴的夹角)表示椅子位置,四只脚着地,距离是的函数,四个距离(四只脚),A,C 两脚与地面距离之和 f(),B,D 两脚与地面距离之和 g(),两个距离,椅脚与地面距离为零,正方形ABCD绕O点旋转,正方形对称性,用数学语言把椅子位置和四只脚着地的关系表示出来,F(),g()是连续数,对任意,f(),g()至少一个为0,数学问题,已知:f(),g()是连续函数

5、;对任意,f()g()=0;且 g(0)=0,f(0)0.证明:存在0,使 f(0)=g(0)=0.,模型构成,地面为连续曲面,椅子在任意位置至少三只脚着地,模型求解,给出一种简单、粗糙的证明方法,将椅子旋转900,对角线AC和BD互换。由g(0)=0,f(0)0,知f(/2)=0,g(/2)0.令h()=f()g(),则h(0)0和h(/2)0.由 f,g的连续性知 h为连续函数,据连续函数的基本性质,必存在0,使h(0)=0,即f(0)=g(0).因为f()g()=0,所以f(0)=g(0)=0.,评注和思考,建模的关键,假设条件的本质与非本质,考察四脚呈长方形的椅子,和 f(),g()的

6、确定,1.3.2 商人们怎样安全过河,问题(智力游戏),3名商人 3名随从,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货.,但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?,问题分析,多步决策过程,决策 每一步(此岸到彼岸或彼岸到此岸)船上的人员,要求在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.,模型构成,xk第k次渡河前此岸的商人数,yk第k次渡河前此岸的随从数,xk,yk=0,1,2,3;k=1,2,sk=(xk,yk)过程的状态,S=(x,y)x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2,S 允许状态集合,uk第k次渡

7、船上的商人数,vk第k次渡船上的随从数,dk=(uk,vk)决策,D=(u,v)u+v=1,2 允许决策集合,uk,vk=0,1,2;k=1,2,sk+1=sk dk,+(-1)k,状态转移律,求dkD(k=1,2,n),使skS,并按转移律由 s1=(3,3)到达 sn+1=(0,0).,多步决策问题,模型求解,穷举法 编程上机,图解法,状态s=(x,y)16个格点,允许决策 移动1或2格;k奇,左下移;k偶,右上移.,d1,,d11给出安全渡河方案,评注和思考,规格化方法,易于推广,考虑4名商人各带一随从的情况,允许状态,S=(x,y)x=0,y=0,1,2,3;x=3,y=0,1,2,3

8、;x=y=1,2,背景,世界人口增长概况,中国人口增长概况,研究人口变化规律,控制人口过快增长,1.3.3 如何预报人口的增长,指数增长模型马尔萨斯提出(1798),常用的计算公式,x(t)时刻t的人口,基本假设:人口(相对)增长率 r 是常数,今年人口 x0,年增长率 r,k年后人口,随着时间增加,人口按指数规律无限增长,指数增长模型的应用及局限性,与19世纪以前欧洲一些地区人口统计数据吻合,适用于19世纪后迁往加拿大的欧洲移民后代,可用于短期人口增长预测,不符合19世纪后多数地区人口增长规律,不能预测较长期的人口增长过程,19世纪后人口数据,阻滞增长模型(Logistic模型),人口增长到

9、一定数量后,增长率下降的原因:,资源、环境等因素对人口增长的阻滞作用,且阻滞作用随人口数量增加而变大,假设,r固有增长率(x很小时),xm人口容量(资源、环境能容纳的最大数量),x(t)S形曲线,x增加先快后慢,阻滞增长模型(Logistic模型),参数估计,用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数 r 或 r,xm,利用统计数据用最小二乘法作拟合,例:美国人口数据(单位百万),专家估计,阻滞增长模型(Logistic模型),模型检验,用模型计算2000年美国人口,与实际数据比较,实际为281.4(百万),模型应用预报美国2010年的人口,加入2000年人口数据后重新估计模型

10、参数,Logistic 模型在经济领域中的应用(如耐用消费品的售量),阻滞增长模型(Logistic模型),数学建模的基本方法,机理分析,测试分析,根据对客观事物特性的认识,找出反映内部机理的数量规律,将对象看作“黑箱”,通过对量测数据的统计分析,找出与数据拟合最好的模型,机理分析没有统一的方法,主要通过实例研究(Case Studies)来学习。以下建模主要指机理分析。,二者结合,用机理分析建立模型结构,用测试分析确定模型参数,1.4 数学建模的方法和步骤,数学建模的一般步骤,模型准备,了解实际背景,明确建模目的,搜集有关信息,掌握对象特征,形成一个比较清晰的问题,模型假设,针对问题特点和建

11、模目的,作出合理的、简化的假设,在合理与简化之间作出折中,模型构成,用数学的语言、符号描述问题,发挥想像力,使用类比法,尽量采用简单的数学工具,数学建模的一般步骤,模型求解,各种数学方法、软件和计算机技术,如结果的误差分析、统计分析、模型对数据的稳定性分析,模型分析,模型检验,与实际现象、数据比较,检验模型的合理性、适用性,模型应用,数学建模的一般步骤,数学建模的全过程,1.5 数学模型的特点和分类,模型的逼真性和可行性,模型的渐进性,模型的强健性,模型的可转移性,模型的非预制性,模型的条理性,模型的技艺性,模型的局限性,数学模型的特点,数学模型的分类,应用领域,人口、交通、经济、生态,数学方法,初等数学、微分方程、规划、统计,表现特性,描述、优化、预报、决策,建模目的,了解程度,白箱,灰箱,黑箱,确定和随机,静态和动态,线性和非线性,离散和连续,1.6 怎样学习数学建模,数学建模与其说是一门技术,不如说是一门艺术,技术大致有章可循,艺术无法归纳成普遍适用的准则,想像力,洞察力,判断力,学习、分析、评价、改进别人作过的模型,亲自动手,认真作几个实际题目,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号