《数上频率估计概率课件修改过好新人教版.ppt》由会员分享,可在线阅读,更多相关《数上频率估计概率课件修改过好新人教版.ppt(22页珍藏版)》请在三一办公上搜索。
1、利用频率估计概率,25.3,知识回顾,同一条件下,在大量重复试验中,如果某随机事件A发生的频率稳定在某个常数p附近,那么这个常数就叫做事件A的概率.,问题(两题中任选一题):,.掷一次骰子,向上的一面数字是的概率是,.某射击运动员射击一次,命中靶心的概率是,命中靶心与未命中靶心发生可能性不相等,25.3利用频率估计概率,试验的结果不是有限个的,各种结果发生的可能性相等,试验的结果是有限个的,等可能事件,二、新课,材料1:,则估计抛掷一枚硬币正面朝上的概率为,o.5,二、新课,材料2:,则估计油菜籽发芽的概率为,0.9,某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?,观察
2、在各次试验中得到的幼树成活的频率,谈谈你的看法,估计移植成活率,成活的频率,0.8,(),0.94,0.923,0.883,0.905,0.897,是实际问题中的一种概率,可理解为成活的概率.,估计移植成活率,由下表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.,所以估计幼树移植成活的概率为,0.9,0.9,成活的频率,0.8,(),0.94,0.923,0.883,0.905,0.897,数学史实,人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数
3、定律.,由频率可以估计概率是由瑞士数学家雅各布伯努利(16541705)最早阐明的,因而他被公认为是概率论的先驱之一,由下表可以发现,幼树移植成活的频率在左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.,所以估计幼树移植成活的概率为,0.9,0.9,成活的频率,0.8,(),0.94,0.923,0.883,0.905,0.897,1.林业部门种植了该幼树1000棵,估计能成活_棵.,2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_棵.,900,556,估计移植成活率,例:张小明承包了一片荒山,他想把这片荒山改造成一个苹果果园,现在有两批幼苗可以选择,它们的成活率
4、如下两个表格所示:类树苗:B类树苗:,0.80.940.8700.9230.8830.8900.9150.9050.902,0.90.980.850.90.8550.8500.8560.8550.851,观察图表,回答问题串,、从表中可以发现,类幼树移植成活的频率在_左右摆动,并且随着统计数据的增加,这种规律愈加明显,估计类幼树移植成活的概率为_,估计类幼树移植成活的概率为_、张小明选择类树苗,还是类树苗呢?_,若他的荒山需要10000株树苗,则他实际需要进树苗_株?3、如果每株树苗9元,则小明买树苗共需 _元,0.9,0.9,0.85,A类,11112,100008,共同练习,完成下表,0.
5、101,0.097,0.097,0.103,0.101,0.098,0.099,0.103,某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?,利用你得到的结论解答下列问题:,根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.,共同练习,0.101,0.097,0.097,0.103,0.101,0.098,0.099,0.103,完成下表,利用你得到的结论解答下列问题:,试一试,1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一
6、渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_尾,鲢鱼_尾.,310,270,2.动物学家通过大量的调查估计出,某种动物活到20岁,的概率为0.8,活到25岁的概率是0.5,活到30岁的概率,是0.3.现年20岁的这种动物活到25岁的概率为多少?现,年25岁的这种动物活到30岁的概率为多少?,精彩回答 设现年20岁的这种动物活到25岁的概率为P1,现年25岁的这种动物活到30岁的概率为P2根据乘法原理(即你要活到25岁的概率,就是先活到20岁,再从20岁活到25岁的概率的乘积),即 0.8P1=0.5 P1=0.625同理 0.5P2=0.3 P2=0.
7、6 因此现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6,概率伴随着我你他,1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?,解:根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有1000000.125=12500人看中央电视台的早间新闻.,2.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、
8、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:,试一试,(1)随着调查次数的增加,红色的频率如何变化?,(2)你能估计调查到10 000名同学时,红色的频率是多少吗?,估计调查到10 000名同学时,红色的频率大约仍是40%左右.,随着调查次数的增加,红色的频率基本稳定在40%左右.,(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?,红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2.,从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证一下你事先估计是否正确?,你能估
9、计图钉尖朝上的概率吗?,大家都来做一做,从同一高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地,通过试验发现:钉尖着地的概率()钉帽着地的概率(填“”、“”或“=”)考点:模拟实验分析:钉尖的面积小于钉帽的面积,故钉尖着地的概率钉帽着地的概率解答:解:由于钉帽的面积大于钉尖的面积,故钉尖着地的概率钉帽着地的概率故本题答案为:点评:此题的关键是根据钉帽和钉尖的面积的大小比较,知识应用,如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.,(1)你能估计出掷中不规则图形的概率吗?,(2)若该长方形的面积为150平方米,试估计不规则图形的面积.,升华提高,了解了一种方法-用多次试验频率去估计概率,体会了一种思想:,用样本去估计总体用频率去估计概率,弄清了一种关系-频率与概率的关系,当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.,小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?,游戏公平吗?,再见,