数学课改的十个论题.ppt

上传人:小飞机 文档编号:6296112 上传时间:2023-10-14 格式:PPT 页数:63 大小:324.82KB
返回 下载 相关 举报
数学课改的十个论题.ppt_第1页
第1页 / 共63页
数学课改的十个论题.ppt_第2页
第2页 / 共63页
数学课改的十个论题.ppt_第3页
第3页 / 共63页
数学课改的十个论题.ppt_第4页
第4页 / 共63页
数学课改的十个论题.ppt_第5页
第5页 / 共63页
点击查看更多>>
资源描述

《数学课改的十个论题.ppt》由会员分享,可在线阅读,更多相关《数学课改的十个论题.ppt(63页珍藏版)》请在三一办公上搜索。

1、数学课改的十个论题,章建跃,一、“新理念”是全新的吗?,核心:以学生的全面、和谐与可持续发展为本教育中的“科学发展观”教学目标全面关注学生的认知、能力和理性精神,以学生最近发展区为定向,促进学生全面、和谐、可持续发展数学育人。,如何落实?高立意,低起点,许多教师的“匠气”太浓,课堂上题型、技巧太多,弥漫着“功利”,缺少思想、精神的追求。数学的“育人”功能如何体现?挖掘数学知识蕴含的价值观资源,在教学中将知识教学与价值观影响融为一体。关键:提高思想性。“技术”:加强“先行组织者”的使用。,例1 不等式基本性质“立意”比较,以往做法:数轴上点的顺序定义数的大小关系,再到“基本事实”(考察两个实数的

2、大小,只要考察它们的差),再由“利用比较实数大小的方法,可以推出下列不等式的性质”。,人教A版的教学设计,数轴上点的顺序定义数的大小关系,再到“基本事实”(考察两个实数的大小统一化归为比较它们的差与0的大小);从“数及其运算”的高度出发,引导学生类比等式的基本性质,在“运算中的不变性、规律性就是性质”的思想指导下,猜想不等式的基本性质;,回到从“基本事实”到“基本性质”的推理过程,得出性质,给出证明;引导学生用不同语言表述“基本性质”(学习心理的考虑);从实例中概括基本不等式的作用明确概括出思想方法。核心:将等式与不等式纳入到数及其运算的系统中,成为用运算律推导出的“性质”,为什么这样设计,既

3、要讲逻辑,更要讲思想加快学生领悟思想的进程(在没有引领的情况下很难“悟”出思想);要正确理解“给学生留出思维空间”以往教学在技能方面空间太小,思想方面空间太大。,教学要求个性差异与统一要求的辩证统一,但以个性差异为出发点和基础教学设计不仅从内容的教学需要预设提问、讲授、训练等,而且特别强调课堂“生成”,预设能引发学生独立思考、自主探究的“开放性问题”,乃至强调“看过问题三百个,不会解题也会问”教学方法讲授、问答、训练的综合,不再是单一的讲授或活动,是教师主导取向的讲授式和学生自主取向的活动式的融合,强调“启发式讲授”的重要性,学习方式接受与探究的融合,强调学生学习主动性、积极性,独立思考和合作

4、学习的结合教学过程知识发生发展过程(自然、水到渠成)为载体的学生认知过程,以学生为主体的数学活动过程,强调学生数学思维的展开、深度参与(教学的有效性)教学评价教师根据教学进程进行教学反馈、调节,学生通过自我监控调节学习进程,重视形成性评价发展的眼光教学媒体追求“必要性”“平衡性”“广泛性”“实践性”“有效性”,服务于数学概念、原理的实质理解,教育领域中,“全新理念”是不能用来指导教改实践的,因为人才的成长没有重复机会,教育要绝对避免“折腾”。“新理念”新在对学生的全面关注上。,二、为什么“内容多课时少”但又能腾出至少一年时间高考复习,立体几何、三角函数、不等式、数列、极限等传统内容的课时量减少

5、;增加了新的内容,算法12课时,推理与证明6课时;概率统计大量增加,概率增加5倍,统计2.5倍,课时增加33。总课时量保持不变。,腾出时间的“智慧”在那里?,增加课时(每周增1课时,两年至少可以增72课时);压缩概念、原理的教学时间。有人说,这都是“高考要求与课标要求脱节”惹的祸。真是这样的吗?“夹生饭”再回锅就做不成可口香米饭了。欲速则不达。“忙”=“心亡”。,三、怎样才算“教完了”?,让学生经历概念的发生发展过程“这样能教完吗?”给学生吃“压缩饼干”:基础知识“一个定义,三项注意”;解题教学“题型教学”,解题技巧大杂烩,“一步到位”。,问题在那里?,不“准”或者是没有围绕概念的核心,或者教

6、错了;不“简”在细枝末节上下功夫,把简单问题复杂化了;不“精”让学生在知识的外围重复训练,耗费学生大量时间、精力却达不到对知识的深入理解。,例2 函数概念的“注意事项”,集合A,B都是数集;任意性;唯一性;可以一对一、多对一,但不能一对多;yf(x)是一个整体,不是f与x的乘积;值域C=f(x)|xA是集合B的子集;函数的三要素三者缺一不可,值域可由定义域和对应法则唯一确定。,在不适当的时候、用不适当的方法强调细节,把学生“教糊涂了”。“教完了”应该以学生是否理解为准,以学生是否达成教学目标为准,特别是学生达到的数学双基的理解和熟练水平为标准(注意,双基包括由内容反映的数学思想方法),而不是教

7、师在课堂上有没有把内容“讲完”。广种薄收是懒汉的做法。,四、怎样才是抓“基础”,我国“双基”的优势正在丧失;现象:(1)数学教学=题型教学=刺激反应(记忆、模范型学习);(2)缺少概念的概括过程,以训练代替概念教学应用可以促进理解,但没有理解的应用是盲目的;(3)过分关注“题型”与“题型”对应的技巧是雕虫小技,无法穷尽,结果是“讲过练过的不一定会,没讲没练的一定不会”;等。,如何改变?,要强调知识及其蕴含的思想方法教学的重要性无知者无能;不断回到概念去,从基本概念出发思考问题、解决问题;加强概念的联系性,从概念的联系中寻找解决问题的新思路。应追求解决问题的“根本大法”基本概念所蕴含的思想方法,

8、强调思想指导下的操作。,例3 向量加法运算及其几何意义的教学设计,先行组织者:类比数及其运算,引进一个量就要研究运算,引进一种运算就要研究运算律。回顾力的合成、速度的合成等物理原理。学生看书,汇报对定义和三角形法则、平行四边形法则的理解,其中特别要注意对“关键词”的理解,要求用自己的语言描述。,已知向量a,b不共线,作出a+b,并说明作法。如果向量a,b共线,如何作a+b?与实数加法运算有什么关系?,五、探究式教学的天时地利人和,天时:建设创新型社会,教育“以培养学生的创新精神和实践能力为重点”;地利:教学内容是否适合于“探究”有的内容不适宜,如公理、定义名称、规定等;但更多的内容可采用探究式

9、教学;,例4 直线与平面垂直的定义,先让学生“直观感受”这种位置关系,给出定义,把主要精力放在对“合理性”的认识上,通过正、反例理解定义的关键词。必须向学生交待清楚:用“说得清道得明”的几何关系(即“直线与直线垂直”)来定义“无法说清”的几何关系(即“直线与平面垂直”)是一种公理化思想,学生则只要采用接受式学习方式即可。,例5 适宜探究的内容举例,等差数列前n项和公式从具体数列求和中提炼概括思想方法:不相同的数求和化归为相同数求和,实现化归的依据是等差数列的性质;平面向量基本定理在“用向量及其运算表示几何元素”的思想下,联系建立直角坐标系的方法、两条相交直线确定一个平面等经验,让学生探究而获得

10、结论;诱导公式在“三角函数是(单位)圆的几何性质的代数表示”的思想下,探究终边关于坐标轴、原点以及直线y=x对称的两个角的关系,而得到所有公式。,人和:师生共同营造的“探究氛围”,有赖于学生“探究式学习的心向”,也有赖于教师的“探究型教学的意识”。数学思想方法在自主探究中有关键作用,需要教师的启发引导注意使用“先行组织者”。探究性学习要融入日常学习,成为“常态化”的学习方式。,例6 在“联系与综合”思想指导下的探究性学习,直线的参数方程:平面直角坐标系中,确定直线的几何要素;参数的思想点P的坐标由参数t唯一确定;有向线段;方向向量;三角函数;比例;,不同联系方式下的教学设计,参数方程:坐标x,

11、y作为参数t的函数以确定曲线的几何要素为基点,考察坐标随哪一要素的变化而变化。找一座“桥”,把任意一点P(x,y)与确定直线的几何要素(倾斜角、点P(x0,y0))联系起来。,与几何、三角的联系,将P(x,y)、yP(x0,y0)在直角坐标 P系中表示出来,可以 P0 M看到P0P的桥梁作用。O x,与向量的联系,向量代数是坐标几何的返璞归真精益求精数轴:原点、方向、长度单位 数轴上点的坐标数乘运算直角坐标系中的直线与数轴没有本质区别:点P(x0,y0)原点 倾斜角方向方向向量长度单位 直线上任意一点的坐标数乘运算,纯粹的代数、三角变换,由直线方程yy0=tan(xx0)出发的代数变换:这一过

12、程无法反映参数的几何意义,“我校生源差,反复讲还记不住,怎能让学生自主探究?”学习是知与行的统一,只“讲”肯定不会;探究是深层次的思维活动,是“心动”与“行动”的融合。生源越差越要精心组织学生的探究活动,如何铺设探究的台阶是对教师的考验。例如,诱导公式的探究,可以从探究具体角(如/3和/3)的三角函数的关系开始。,六、概念教学的要义是什么?,概念教学的核心概括:将凝结在数学概念中的数学家的思维打开,以典型丰富的实例为载体,引导学生展开观察、分析各事例的属性、抽象概括共同本质属性,归纳得出数学概念;先“举三反一”,再“举一反三”:先用典型、丰富的具体事例,分析、综合、比较而概括出共同本质属性;再

13、把共同本质属性推广到同类事物中。,概念教学的基本环节,典型丰富的具体例证属性的分析、比较、综合;概括共同本质特征得到概念的本质属性;下定义(准确的数学语言描述);概念的辨析以实例(正例、反例)为载体分析关键词的含义;用概念作判断的具体事例形成用概念作判断的具体步骤;概念的“精致”建立与相关概念的联系。,例7 函数奇偶性的教学,急功近利的做法(1)给出函数y=x2和y=x的图像,并提出问题:如果从图象的对称性观察,两个图像各有什么特点?(2)给表格并提问:数量关系上有啥特征?(3)能否描述一下函数y=x2的特征?,学生的回答:对于y=x2,当x取任意数时y都取正数;函数图像关于y轴对称;自变量取

14、一对相反数时,函数值相等;(4)对于定义域内任意一个x,是否都有 f(x)f(x)?(5)能否描述一下偶函数的定义?“一个函数打天下”,缺乏概括的基础。,注重概括过程的做法,典型、丰富的例证不止一个:y=x2,y=|x|,y=x22;从观察图像、概括共同特征入手;列表,从数的角度描述特征;形、数对照从形到数用函数符号语言描述特征;概念的精致:内涵、外延的深加工,概念要素的具体界定;组织建立相关知识的联系。,七、如何理解螺旋上升、循序渐进?,“模块化”体系下,立体几何、解析几何、概率、统计等都采用“螺旋上升”式,怎么看?螺旋上升既有数学概念发展史的依据,也有学生思维发展规律的依据;螺旋上升应该体

15、现“必要性”,如函数概念必须螺旋式学习,但解析几何不必搞三个螺旋;,“螺旋式”可能产生的问题是重复学习统计与概率的问题;重要的数学思想方法必须得到“螺旋上升地重复”“隐性知识”,“可以意会不可言传”,要经历“渗透概括应用”的学习阶段。,例8 概念多元联系表示体现的螺旋上升,比例关系:算术比和比例、百分数、比例尺;平面几何线段比和比例、相似形等;解析几何斜率、线性方程;统计与概率统计图表、频率与概率。当利用基本的几何概念(如相似)和代数概念(如线性关系)引入比例概念时,学生对比例关系的理解就会更深刻。,八、如何理解“不是教教材,是用教材教”?,现象:脱离教材,大量使用教辅;原因:教材内容“简单”

16、,不足以应付高考;对“不是教教材,而是用教材教”、“创造性使用教材”的意图有误解;有的教师不善于或不愿意花大力气研究教材。,我的看法,“不是教教材,而是用教材教”“脱离教材”,是针对“照本宣科”的;教材的“基础性”与高考的“选拔性”有目标差异,但学好教材一定是高考取得好成绩的前提,教师的主要精力应当放在帮助学生熟练掌握教材内容上。,理解教材是当好数学教师的前提,而“理解教材”的第一要义是“理解数学”:了解数学概念的背景,把握概念的逻辑意义,理解内容所反映的思想方法,挖掘知识所蕴含的科学方法、理性思维过程和价值观资源,区分核心知识和非核心知识等。课本、课本,一科之本。课堂教学应“以课本为本”。,

17、例9 函数概念概括过程的设计,目的:反映函数概念本质,形成正确的函数概念“对应关系”的理解,y=f(x)中,符号f、x、y的含义,f的表现形式的多样性、本质的一致性(三要素)既是重点也是难点,特别重视用表格、图象表示的对应关系的使用,目的是帮助学生从“多元联系表示”上深入思考,为突破难点奠定基础;,(1)从典型实例出发引出函数概念目的:加强背景,体现“函数模型”思想;加强概念形成过程;在学生头脑中形成丰富的函数例证。抽象概念的学习要从具体例证开始 理解抽象概念需要具体例证的支持,用“归纳式”构建教学过程,(2)精心选择实例 解析式、图象、表格目的形成正确的函数概念:函数是刻画变量间依赖关系的法

18、则;不一定都有解析式,即对应关系f可以是解析式,也可以是图,还可以是表格;加强用集合与对应的语言描述两个变量之间对应关系的引导;不在细节上过分纠缠。,(3)让学生构造具体背景解释抽象的解析式,函数y=x2,xR的对应关系是什么?请构造一个具体背景,解释这个对应关系。构造一个实际背景,解释函数y=的对应关系。,九、重结果轻过程的危害是什么?,数学是思维的科学。数学思想方法孕育于知识的发生发展过程中。“思想”是概念的灵魂,是“数学素养”的源泉,是从技能到能力的桥梁;“过程”是“思想”的载体,是领悟概念本质的平台,是思维训练的通道,是培养数学能力的土壤。,没有过程=没有思想;没有思想就难以理解概念的

19、实质;缺乏数学思想方法的纽带,概念间的关系无法认识、联系也难以建立,导致学生的数学认知结构缺乏整体性,其可利用性、可辨别性和稳定性等“功能指标”都会大打折扣。没有“过程”的教学把“思维的体操”降格为“刺激反应”训练,是教育功利化在数学教学中的集中表现。,例10“递推数列”的教学,常见做法归纳题型,总结技巧:1利用a1=S1,an=SnSn-12an+1=k an+b型,分k=1和k1讨论,k1 时,设an+1+m=k(an+m),3an+1=kan+f(n)型,分k=1、f(n)是否可求和,k1、f(n)=an+b,f(n)=qn(q 0,1),等;4an+1=f(n)an型;5.an+2=p

20、an+1+qan(p、q为常数)型;题型套题型,题型何其多,没有思想方法作为主线,杂乱无章。,an+1=p an+q型通项公式的教学设计,求an+1=p an+q型数列通项公式问题,一般地,抽象问题具体化、一般问题特殊化是研究问题的基本策略。问题1 已知a1=1,an+1=2an+1(n1),求通项公式。问题2 已知a1=1,an+1=2an+3(n1),求通项公式。问题3 已知a1=1,an+1=3an+1(n1),求通项公式。,问题1、2可以“凑”,但问题3不能,怎么办?注意观察前两个问题的解决过程,转化得到的结构有什么共性?对解决问题3有什么启发?结论:都转化为an+1+t=k(an+t

21、)的形式。问题4 一般地,对于a1=a,an+1=pan+1+q,如何求通项公式?因为推广到了“同类事物”,所以要注意“完备性”,细节、特例的追究。,十、什么才是“数学思维的教学”,比较流行的教学有两种:一是数学教学=解题教学;二是辛勤挖掘“细枝末节”,并在细枝末节上对学生进行强化训练,认为这是对思维严谨性的训练,例如,对零向量的“辛勤耕耘”:怎样表示0向量?0向量的长度为什么为0,方向任意?ab,bc,那么ac吗?零向量与零向量相等吗?a=b 则ab,对吗?ab,则a与b方向相同或相反,对吗?,例11“柯西不等式”的教学设计,引入:均值不等式的推广方法为引子,指出探究的方向可以是“指数的推广

22、”、“元数的推广”等。这些做完了,还能不能有其他方向的探究。问题1:比较(a2+b2)(c2+d2)与(ac+bd)2的大小关系。追问:还有别的方法吗?(a2+b2)(c2+d2)(ac+bd)2的结构能给我们什么联想和启发?构造函数y=(a2+b2)x2+2(ac+bd)x+(c2+d2)。,问题2:你能对这一不等式作出几何解释吗?问题3:将这一不等式作出推广,给出证明和相应的几何解释,并说明你在推广不等式时的思路。问题4:你认为柯西不等式有怎样的结构特征?,设计思路,可以想像,柯西在发现这一不等式可能有一定的偶然性,可能经过一定的“尝试错误”。引入时给一定的合情推理的引导,使探究成为一种“

23、定向探究”。比较(a2+b2)(c2+d2)与(ac+bd)2的大小关系,是在学生定向探究后的学习任务,主要考虑学习效率问题。在“二元”时就让学生考虑构造二次函数的证明方法,是为n元时的证明作铺垫。后续的推广和证明原则上都要求学生自己给出。,结束语,教育改革需要一定的理想化色彩;不要忘记我们的“教人做人、做事”的职责;教研应该成为我们的生活方式,学而时习之,思想到了极致则开悟;能力的来源:信心,精进,正念,定力,智慧;为人师表默而识之,学而不厌,诲人不倦。,成功的基础美国国家数学咨询委员会最终报告,2008年3月提交报告,就美国中小学数学课程内容、学生学习过程、教师教育、教学方法、教材、考试、

24、数学教育研究等七个方面提出了45条建议。(1)要有效组织数学课程内容重点突出、前后关联、循序渐进,强调掌握关键内容;(2)学生的数学学习,理解概念、熟练计算、掌握解决问题的技能三者互相联系、相互促进,应全面培养这些能力;必须给学生进行足够量的算术基本运算练习,达到自动化水平;学生的努力程度对提高数学成绩至关重要;,(3)具备丰富数学知识的教师在课堂中扮演着核心角色,教师对数学知识的掌握对提高学生数学成绩至关重要;(4)并不存在普遍适用的教学方式,教师讲授、合作学习、学生自主探究等,采取何种方式应根据当时特定的教学条件;而对于那些“学困生”,采取“示范+大量模仿式训练+出声思考+教师反馈与评价”的教学方式,能有效提高学生的数学学习成绩;(5)过多使用计算器可能阻碍学生自动回忆能力的发展,从而不利于形成熟练的计算能力;等。,数学教改也应贯彻“不动摇、不懈怠、不折腾”思想。在与学生认知发展相适应的原则下,要强调数学课程的逻辑性、系统性;要坚持“双基”教学不动摇;要坚持“启发式”教学思想不动摇;要坚持提倡学生刻苦学习;等。找准问题进行改革。,敬请批评指正谢谢,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号