《圆周角二-圆内接四边形.ppt》由会员分享,可在线阅读,更多相关《圆周角二-圆内接四边形.ppt(11页珍藏版)》请在三一办公上搜索。
1、24.1.4 圆周角(二),爱护卫生,祝你进步!,学习目标:1、学习圆内接多边形的概念 2、理解圆内接多边形定理并会应用,确定圆的条件,3.作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上),你能作出几个这样的圆?,老师提示:能否转化为:经过两点A,B的圆的圆心在线段AB的垂直平分线上.,你准备如何(确定圆心,半径)作圆?,其圆心的位置有什么特点?与A,B,C有什么关系?,B,C,经过两点B,C的圆的圆心在线段AB的垂直平分线上.,A,经过三点A,B,C的圆的圆心应该这两条垂直平分线的交点O的位置.,O,确定圆的条件,请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上
2、).,以O为圆心,OA(或OB,或OC)为半径,作O即可.,请你证明你做得圆符合要求.,B,C,A,O,证明:点O在AB的垂直平分线上,,O就是所求作的圆,OA=OB.,同理,OB=OC.,OA=OB=OC.,点A,B,C在以O为圆心的圆上.,这样的圆可以作出几个?为什么?.,三角形与圆的位置关系,因此,三角形的三个顶点确定一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心.,探究:直角三角形;钝角三角形的外接圆是怎样的?画一画,四边形与圆的位置关系,如果四边形的四个顶点在一个圆,这圆叫做四边形的外接圆.这个四边形叫做圆的
3、内接四边形.,我们可以证明圆内接四边的两个重要性质:1.圆内接四边形对角互补.2.圆内接四边形对的一个外角等于它的内对角.3.对角互补的四边形内接于圆.,C,O,D,B,A,如图:圆内接四边形ABCD中,,BAD等于弧BCD所对圆心角的一半,BCD等于弧BAD所对圆心角的一半.而弧BCD所对的圆心角+弧BAD所对的圆心角=360,,BADBCD,180.,同理ABCADC180.,圆内接四边形的对角互补.,四边形与圆的位置关系,如果延长BC到E,那么DCEBCD,180.,ADCE.,又 A BCD180,,四边形与圆的位置关系,因为A是与DCE相邻的内角DCB的对角,我们把A叫做DCE的内对角.,圆内接四边形的一个外角等于它的内对角.,三角形与圆的位置关系,分别作出锐角三角形,直角三角形,钝角三角形的外接圆,并说明与它们外心的位置情况,锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.,老师期望:作三角形的外接圆是必备基本技能,定要熟练掌握.,判断:,1、所有三角形都有且只有一个外接圆()2、,