《线性回归模型的基本假设.ppt》由会员分享,可在线阅读,更多相关《线性回归模型的基本假设.ppt(10页珍藏版)》请在三一办公上搜索。
1、2.2 一元线性回归模型的基本假设(Assumptions of Simple Linear Regression Model),一、关于模型设定的假设 二、关于解释变量的假设 三、关于随机项的假设,一元线性回归模型:只有一个解释变量,i=1,2,n,Y为被解释变量,X为解释变量,0与1为待估参数,为随机干扰项,说明,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。实际上这些假设与所采用的估计方法紧密相关。下面的假设主要是针对采用普通最小二乘法(Ordinary Least Squares,OLS)估计而提出的。所以,在有些教科书中称为“The Assumption Underly
2、ing the Method of Least Squares”。在不同的教科书上关于基本假设的陈述略有不同,下面进行了重新归纳。,1、关于模型关系的假设,模型设定正确假设。The regression model is correctly specified.线性回归假设。The regression model is linear in the parameters。,注意:“linear in the parameters”的含义是什么?,2、关于解释变量的假设,确定性假设。X values are fixed in repeated sampling.More technically,
3、X is assumed to be nonstochastic.注意:“in repeated sampling”的含义是什么?与随机项不相关假设。The covariances between Xi and i are zero.,由确定性假设可以推断。,观测值变化假设。X values in a given sample must not all be the same.无完全共线性假设。There is no perfect multicollinearity among the explanatory variables.适用于多元线性回归模型。样本方差假设。随着样本容量的无限增加,
4、解释变量X的样本方差趋于一有限常数。,时间序列数据作样本时间适用,3、关于随机项的假设,0均值假设。The conditional mean value of i is zero.,同方差假设。The conditional variances of i are identical.(Homoscedasticity),由模型设定正确假设推断。,是否满足需要检验。,序列不相关假设。The correlation between any two i and j is zero.,是否满足需要检验。,4、随机项的正态性假设,在采用OLS进行参数估计时,不需要正态性假设。在利用参数估计量进行统计推断
5、时,需要假设随机项的概率分布。一般假设随机项服从正态分布。可以利用中心极限定理(central limit theorem,CLT)进行证明。正态性假设。The s follow the normal distribution.,5、CLRM 和 CNLRM,以上假设(正态性假设除外)也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(Classical Linear Regression Model,CLRM)。同时满足正态性假设的线性回归模型,称为经典正态线性回归模型(Classical Normal Linear Regression Model,CNLRM)。,