《第8章方差分析与试验设计.ppt》由会员分享,可在线阅读,更多相关《第8章方差分析与试验设计.ppt(46页珍藏版)》请在三一办公上搜索。
1、第 7 章 方差分析与试验设计,7.1 方差分析引论 7.2 单因素方差分析7.3 方差分析中的多重比较,学习目标,解释方差分析的概念解释方差分析的基本思想和原理掌握单因素方差分析的方法及应用理解多重比较的意义,7.1 方差分析引论,一、方差分析及其有关术语二、方差分析的基本思想和原理三、方差分析的基本假定四、问题的一般提法,方差分析及其有关术语,什么是方差分析(ANOVA)?(analysis of variance),检验多个总体均值是否相等通过分析数据的误差判断各总体均值是否相等研究分类型自变量对数值型因变量的影响 一个或多个分类尺度的自变量两个或多个(k 个)处理水平或分类有单因素方差
2、分析和双因素方差分析单因素方差分析:涉及一个分类的自变量双因素方差分析:涉及两个分类的自变量,什么是方差分析?(例题分析),【例】为了对几个行业的服务质量进行评价,消费者协会在四个行业分别抽取了不同的企业作为样本。最近一年中消费者对总共23家企业投诉的次数如下表,什么是方差分析?(例题分析),分析四个行业之间的服务质量是否有显著差异,也就是要判断“行业”对“投诉次数”是否有显著影响作出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等若它们的均值相等,则意味着“行业”对投诉次数是没有影响的,即它们之间的服务质量没有显著差异;若均值不全相等,则意味着“行业”对投诉次数是有影响的,它们之间
3、的服务质量有显著差异,方差分析中的有关术语,因素或因子(factor)所要检验的对象要分析行业对投诉次数是否有影响,行业是要检验的因素或因子水平或处理(treatment)因子的不同表现零售业、旅游业、航空公司、家电制造业就是因子的水平观察值在每个因素水平下得到的样本数据每个行业被投诉的次数就是观察值,方差分析的基本思想和原理,方差分析的基本思想和原理(图形分析),从散点图上可以看出不同行业被投诉的次数是有明显差异的同一个行业,不同企业被投诉的次数也明显不同行业与被投诉次数之间有一定的关系,方差分析的基本思想和原理(图形分析),3.仅从散点图上观察还不能提供充分的证据证明不同行业被投诉的次数之
4、间有显著差异4.需要有更准确的方法来检验这种差异是否显著,也就是进行方差分析,方差分析的基本思想和原理,方差分析的基本思想和原理(两类误差),随机误差因素的同一水平(总体)下,样本各观察值之间的差异比如,同一行业下不同企业被投诉次数是不同的这种差异可以看成是随机因素的影响,称为随机误差 系统误差因素的不同水平(不同总体)下,各观察值之间的差异比如,不同行业之间的被投诉次数之间的差异这种差异可能是由于抽样的随机性所造成的,也可能是由于行业本身所造成的,后者所形成的误差是由系统性因素造成的,称为系统误差,方差分析的基本思想和原理(两类方差),数据的误差用平方和(sum of squares)表示,
5、称为方差组内方差(within groups)因素的同一水平(同一个总体)下样本数据的方差组间方差(between groups)因素的不同水平(不同总体)下各样本之间的方差,方差分析的基本思想和原理(方差的比较),若不同行业对投诉次数没有影响,则组间误差中只包含随机误差,没有系统误差。这时,组间误差与组内误差经过平均后的数值就应该很接近,它们的比值就会接近1若不同行业对投诉次数有影响,在组间误差中除了包含随机误差外,还会包含有系统误差,这时组间误差平均后的数值就会大于组内误差平均后的数值,它们之间的比值就会大于1当这个比值大到某种程度时,就可以说不同水平之间存在着显著差异,方差分析的基本假定
6、,方差分析的基本假定,每个总体都应服从正态分布对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本各个总体的方差必须相同各组观察数据是从具有相同方差的总体中抽取的观察值是独立的,方差分析中的基本假定,在上述假定条件下,判断行业对投诉次数是否有显著影响,实际上也就是检验具有同方差的四个正态总体的均值是否相等如果四个总体的均值相等,可以期望四个样本的均值也会很接近,方差分析中基本假定,如果原假设成立,即H0:m1=m2=m3=m4四个行业被投诉次数的均值都相等意味着每个样本都来自均值为、方差为 2的同一正态总体,X,f(X),1 2 3 4,方差分析中基本假定,若备择假设成立,即H1
7、:mi(i=1,2,3,4)不全相等至少有一个总体的均值是不同的四个样本分别来自均值不同的四个正态总体,问题的一般提法,问题的一般提法,设因素有k个水平,每个水平的均值分别用1,2,k 表示要检验k个水平(总体)的均值是否相等,需要提出如下假设:H0:1 2 k H1:1,2,,k 不全相等设1为零售业被投诉次数的均值,2为旅游业被投诉次数的均值,3为航空公司被投诉次数的均值,4为家电制造业被投诉次数的均值,提出的假设为H0:1 2 3 4 H1:1,2,3,4 不全相等,7.2 单因素方差分析,一、数据结构二、分析步骤,单因素方差分析的数据结构(one-way analysis of var
8、iance),分析步骤,提出假设,一般提法H0:m1=m2=mk 自变量对因变量没有显著影响 H1:m1,m2,mk不全相等自变量对因变量有显著影响 注意:拒绝原假设,只表明至少有两个总体的均值不相等,并不意味着所有的均值都不相等,构造检验的统计量(计算水平的均值),假定从第i个总体中抽取一个容量为ni的简单随机样本,第i个总体的样本均值为该样本的全部观察值总和除以观察值的个数计算公式为,式中:ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值,构造检验的统计量(计算全部观察值的总均值),全部观察值的总和除以观察值的总个数计算公式为,构造检验的统计量(例题分析),
9、构造检验的统计量(计算总误差平方和 SST),全部观察值 与总平均值 的离差平方和反映全部观察值的离散状况其计算公式为,前例的计算结果:SST=(57-47.869565)2+(58-47.869565)2=115.9295,构造检验的统计量(计算水平项平方和 SSA),各组平均值 与总平均值 的离差平方和反映各总体的样本均值之间的差异程度,又称组间平方和该平方和既包括随机误差,也包括系统误差计算公式为,前例的计算结果:SSA=1456.608696,构造检验的统计量(计算误差项平方和 SSE),每个水平或组的各样本数据与其组平均值的离差平方和反映每个样本各观察值的离散状况,又称组内平方和该平
10、方和反映的是随机误差的大小计算公式为,前例的计算结果:SSE=2708,构造检验的统计量(三个平方和的关系),总离差平方和(SST)、误差项离差平方和(SSE)、水平项离差平方和(SSA)之间的关系,SST=SSA+SSE,前例的计算结果:4164.608696=1456.608696+2708,构造检验的统计量(三个平方和的作用),SST反映全部数据总的误差程度;SSE反映随机误差的大小;SSA反映随机误差和系统误差的大小如果原假设成立,则表明没有系统误差,组间平方和SSA除以自由度后的均方与组内平方和SSE和除以自由度后的均方差异就不会太大;如果组间均方显著地大于组内均方,说明各水平(总体
11、)之间的差异不仅有随机误差,还有系统误差判断因素的水平是否对其观察值有影响,实际上就是比较组间方差与组内方差之间差异的大小,构造检验的统计量(计算均方MS),各误差平方和的大小与观察值的多少有关,为消除观察值多少对误差平方和大小的影响,需要将其平均,这就是均方,也称为方差计算方法是用误差平方和除以相应的自由度三个平方和对应的自由度分别是SST 的自由度为n-1,其中n为全部观察值的个数SSA的自由度为k-1,其中k为因素水平(总体)的个数SSE 的自由度为n-k,构造检验的统计量(计算均方 MS),组间方差:SSA的均方,记为MSA,计算公式为,组内方差:SSE的均方,记为MSE,计算公式为,
12、构造检验的统计量(计算检验统计量 F),将MSA和MSE进行对比,即得到所需要的检验统计量F当H0为真时,二者的比值服从分子自由度为k-1、分母自由度为 n-k 的 F 分布,即,构造检验的统计量(F分布与拒绝域),统计决策,将统计量的值F与给定的显著性水平的临界值F进行比较,作出对原假设H0的决策根据给定的显著性水平,在F分布表中查找与第一自由度df1k-1、第二自由度df2=n-k 相应的临界值 F 若FF,则拒绝原假设H0,表明均值之间的差异是显著的,所检验的因素对观察值有显著影响若FF,则不能拒绝原假设H0,表明所检验的因素对观察值没有显著影响,7.3 方差分析中的多重比较,一、多重比
13、较的意义二、多重比较的方法,方差分析中的多重比较(multiple comparison procedures),通过对总体均值之间的配对比较来进一步检验到底哪些均值之间存在差异可采用Fisher提出的最小显著差异方法,简写为LSD LSD方法是对检验两个总体均值是否相等的t检验方法的总体方差估计加以修正(用MSE来代替)而得到的,方差分析中的多重比较(步骤),提出假设H0:mi=mj(第i个总体的均值等于第j个总体的均值)H1:mi mj(第i个总体的均值不等于第j个总体的均值)计算检验的统计量:计算LSD决策:若,拒绝H0;若,不拒绝H0,方差分析中的多重比较(例题分析),第1步:提出假设检验1:检验2:检验3:检验4:检验5:检验6:,方差分析中的多重比较(例题分析),第2步:计算检验统计量检验1:检验2:检验3:检验4:检验5:检验6:,方差分析中的多重比较(例题分析),第3步:计算LSD检验1:检验2:检验3:检验4:检验5:检验6:,方差分析中的多重比较(例题分析),第4步:作出决策,零售业与旅游业均值之间没有显著差异,零售业与航空公司均值之间没有显著差异,零售业与家电业均值之间没有显著差异,旅游业与航空业均值之间没有显著差异,旅游业与家电业均值之间没有显著差异,航空业与家电业均值有显著差异,