《电力电子技术实验报告_北京科技大学.doc》由会员分享,可在线阅读,更多相关《电力电子技术实验报告_北京科技大学.doc(14页珍藏版)》请在三一办公上搜索。
1、电力电子技术实验报告学 院 自动化 专业班级 自班姓 名 学 号 合 作 者 成 绩 20XX11月实验一 锯齿波同步移相触发电路实验一实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2掌握锯齿波同步触发电路的调试方法。二实验内容 1认识锯齿波同步触发电路。2锯齿波同步触发电路各点波形观察.分析。 三实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大.锯齿波形成.同步移相等环节组成.其工作原理可参见电力电子技术有关教材。四实验设备及仪器1MEL002组件2NMCL31A组件3NMCL05E组件4NMEL03组件5双踪示波器6万用表五实验方法 1将NMCL-05E面板上左
2、上角的同步电压输入与MEL002的U、V端相接.触发电路选择锯齿波。2合上主电路电源开关.用示波器观察各观察孔的波形.并记录各点波型.示波器的地线接于7端。观察16孔的波形.了解锯齿波脉冲发生器的原理.记录各点波形。3调节脉冲移相范围1将NMCL31A的G给定接到NMCL-05E的Ug孔.并将输出电压Ug调至0V.即将控制电压Uct调至零.用示波器观察U2电压即2孔及U5的波形.调节偏移电压Ub调锯齿波触发电路中RP.使a=180O即Uct=0时.a=180O.继续调节RP.观察角的变化.直到a=30O.。2在Uct=0时.使a=180O.调节NMCL31A的给定电位器RP1.增加Uct.观察
3、脉冲的移动情况.增大Uct直到a=30O.以满足移相范围a=30O180O的要求.记录a=30O时UmaxUct值。4调节Uct.使a=60O.观察输出脉冲电压UG1K1.UG6K6的波形.并标出其幅值与宽度。用导线连接K1和K3端.用双踪示波器观察UG1K1和UG3K3的波形.并标出其幅值与宽度.记录UG1K1和UG3K3的相位关系。六实验报告1整理.描绘实验中记录的各点波形。1点波形: 2点波形:3点波形: 4点波形:5点波形: 6点波形:U2、U 5波形:2总结锯齿波同步触发电路移相范围的调试方法.移相范围的大小与哪些参数有关?锯齿波同步触发电路移相范围的调试方法:调节电位器RP2.改变
4、偏移电压Ub.从而改变a。移相范围的大小与控制电压Uct.偏移电压Ub即锯齿波触发电路中RP有关。调节输出电压Ug即调节控制电压Uct或调节偏移电压Ub即调锯齿波触发电路中RP都可以改变a。可以先将其中一个固定.再调节另外一个变量.达到想要的移相角度。3如果要求Uct=0时.a=90O.应如何调整?将输出电压Ug调至0V.即控制电压Uct调至0.调节偏移电压Ub即调锯齿波触发电路中RP.使a=90O。或者将NMCL31A的G给定接到NMCL-05E的Ug孔.并将输出电压Ug调至0V.即将控制电压Uct调至零.用示波器观察U2电压即2孔及U5的波形.使a=90O实验二 单项桥式全控整流电路实验一
5、实验目的1了解单相桥式全控整流电路的工作原理。2研究单相桥式全控整流电路在电阻负载、电阻电感性负载及反电势负载时的工作。3熟悉NMCL05E组件。二实验线路及原理参见图2-1。三实验内容1单相桥式全控整流电路供电给电阻负载。2单相桥式全控整流电路供电给电阻电感性负载。四实验设备及仪器1MEL002组件2NMCL331组件3NMCL05E组件4NMEL03组件5NMCL31A组件6NMCL33组件7双踪示波器自备8万用表自备五注意事项1本实验中触发可控硅的脉冲来自NMCL-05E挂箱.故NMCL-33的内部脉冲需断.以免造成误触发。2电阻RD的调节需注意。若电阻过小.会出现电流过大造成过流保护动
6、作熔断丝烧断.或仪表告警;若电阻过大.则可能流过可控硅的电流小于其维持电流.造成可控硅时断时续。3电感的值可根据需要选择.需防止过大的电感造成可控硅不能导通。4NMCL-05E面板的锯齿波触发脉冲需导线连到NMCL-33面板.应注意连线不可接错.否则易造成损坏可控硅。5示波器的两根地线共地.必须注意需接等电位.否则易造成短路事故。图2-1单相桥式全控整流电路主回路实验接线图六实验方法1控制回路NMCL-05E与实验一相同.主回路部分按图2-1接线,2断开NMCL-05E和NMCL-33的触发信号连接线.合上主电路电源.此时锯齿波触发电路应处于工作状态。NMCL31的给定电位器RP1逆时针调到底
7、.使Uct=0。调节偏移电压电位器RP.使a=90。断开主电源.连接NMCL-05E和NMCL-33之间的触发信号连接线。3单相桥式全控整流电路供电给电阻负载。接上电阻负载可采用两只900电阻并联.并调节电阻负载至最大.短接平波电抗器。合上主电路电源.调节Uct.求取在不同a角30、60、90时整流电路的输出电压Ud=ft.晶闸管的端电压UVT=ft的波形.并记录相应a时的Uct、Ud和交流输入电压U2值。4单相桥式全控整流电路供电给电阻电感性负载。接入平波电抗器中700mH电感.观察a=60.90.Ud=ft、id=ft的波形.记录相应a时的Uct、Ud和交流输入电压U2值。改变电感值L=1
8、00mH.观察a=60.90.Ud=ft、id=ft的波形.记录相应a时的Uct、Ud和交流输入电压U2值。七实验报告1绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下.当a=60.90时的Ud、UVT波形.根据公式计算a=60.90时的Ud值.并与实测值比较.分析数据结果。2绘出单相桥式晶闸管全控整流电路供电给电阻电感性负载情况下.当a=60.90时的Ud、id、UVT波形.比较不同电感时Ud、id.并加以分析。根据公式计算a=60.90时的Ud值.并与实测值比较.分析数据结果。a=60a=90UdL=100mHIdL=100mHUVTL=100mHUdL=700mHidL=700mHUV
9、TL=700mH数据分析:U1=200VUd=60Ud=90计算值90V0V实测值L=100mH95.2V10.3V实测值L=700mH94.6V5.2V分析:电阻电感性负载情况下.实测值要大于计算值.当=90时的Ud计算值应为0.但实测值并不为0.可能是电感值不够大.不能近似为一水平直线。电感大的时候.Id更接近一条直线.所以L=700mH的Ud和Id效果更好。实验四三相桥式全控整流及有源逆变电路实验一实验目的1熟悉NMCL-33组件。2熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。二实验内容1三相桥式全控整流电路。2三相桥式有源逆变电路。3观察整流或逆变状态下.模拟电路故障现象时的波
10、形。三实验线路及原理主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。触发电路为数字集成电路.可输出经高频调制后的双窄脉冲链。三相桥式整流及有源逆变电路的工作原理可参见电力电子技术的有关教材。四实验设备及仪器1教学实验台主控制屏2NMCL33组件3NMEL03组件4NMCL31A组件5NMCL24组件6双踪示波器自备7万用表自备五实验方法1未上主电源之前.检查晶闸管的脉冲是否正常1用示波器观察NMCL-33的双脉冲观察孔.应有间隔均匀.相互间隔60o的幅度相同的双脉冲。2检查相序.用示波器观察1.2脉冲观察孔.1 脉冲超前2 脉冲600.则相序正确.否则.应调整输入电源。3用示波
11、器观察每只晶闸管的控制极.阴极.应有幅度为1V2V的脉冲。注:将面板上的Ublf当三相桥式全控变流电路使用I组桥晶闸管VT1VT6时接地.将I组桥式触发脉冲的六个开关均拨到接通。4将NMCL31的给定器输出Ug接至NMCL-33面板的Uct端.调节偏移电压Ub.在Uct=0时.使a=150o。调a方法:用示波器同时观察同步电压观察的U相与脉冲观察及通断控制部分的一号脉冲比对调节.示波器地端接脉冲大控制的地端。注意:调a角时.控制回路脉冲放大控制两点连线一定断开2三相桥式全控整流电路 按图4-2接线.并将RD调至最大。变压器1u.1v.1w为变压器220v组.2u.2v.2w为63.8v组。图4
12、-1三相桥式全控整流电路主回路接线图调节Uct=0.合上主电源.按实验要求调节Uct.使a=30O.按图4-2接好控制回路。用示波器观察记录a=30O时.整流电压ud=ft.晶闸管两端电压uVT=ft的波形.并记录相应的Ud和交流输入电压U2数值。断开控制回路脉冲放大控制两点连线.调到a=60O.再接好控制回路。用示波器观察记录整流电压ud=ft.晶闸管两端电压uVT=ft的波形.并记录相应的Ud和交流输入电压U2数值。同样方法调到a=90O.用示波器观察记录整流电压ud=ft.晶闸管两端电压uVT=ft的波形.并记录相应的Ud和交流输入电压U2数值。3电路模拟故障现象观察在整流状态时.断开某
13、一晶闸管元件的触发脉冲开关.则该元件无触发脉冲即该支路不能导通.观察并记录此时的ud波形。4三相桥式有源逆变电路断开电源开关后.按图4-3接线。断开控制回路脉冲放大控制两点连线.调节Uct.使a仍为150O.再接好控制回路。合上主电源.观察此时电路中ud、uVT的波形.并记录相应的Ud、U2数值。同样方法调节a=90O和120O.观察电路中ud、uVT的波形.并记录相应的Ud、U2数值。注意:调a角时.控制回路脉冲放大控制两点连线一定断开六实验报告1 画出三相桥式全控整流电路时.a角为30O、60O、90O时电阻及阻感负载的ud、uVT波形。根据公式计算a=30O、60.90时的Ud值.并与实
14、测值比较.分析数据结果。ud、uVT波形a=0a=60UdL=100mHUVTL=100mHUd值计算值与实测值比较结果触发角线电压Ud实测值Ud计算值=077.4100.7104.0=6077.426.2852.3=9077.411.213.9数据分析:实测值与计算值比较发现.实测值与计算值基本一致.但是由于系统因素和我们的读书误差.使得实测值与计算值存在一定的偏差.通过三相桥式全控整流电路的实验.验证了我们在电力电子技术理论课程中所学的:当整流输出电压连续时即带阻感负载时.或带电阻负载a60时的平均值为:带电阻负载且a 60时.整流电压平均值为:2画出三相桥式有源逆变电路时.角为30O、6
15、0O、90O 时的ud波形。根据公式计算=30O、60.90时的Ud值.并与实测值比较.分析数据结果。Ud波形b=60b=90UdL=100mHUd值计算值与实测值比较结果触发角线电压Ud实测值Ud计算值b=60105.5-62.0-70.9b=90105.5-1.2140数据分析:实测值与理论值存在偏差.但在实验允许范围内。验证了三相桥式有源逆变电路中:整流电压平均值为:实验五 直流斩波设计性的性能研究一实验目的熟悉三种斩波电路buck chopper 、boost chopper 、buck-boost chopper的工作原理.掌握这三种斩波电路的工作状态及波形情况。二实验内容1 SG3
16、525芯片的调试2 斩波电路的连接3 斩波电路的波形观察及电压测试三实验设备及仪器1 电力电子教学试验台主控制屏2 MMCL-22组件3 示波器4 万用表四实验方法按照面板上各种斩波器的电路图.取用相应的元件.搭成相应的斩波电路即可.1. SG3525性能测试 先按下开关s11 锯齿波周期与幅值测量分开关s2、s3、s4合上与断开多种情况。测量1端。记录不同频率时锯齿波的周期及幅值。2输出最大与最小占空比测量。测量2端。2buck chopper连接电路。将UPW的输出端2端接到斩波电路中IGBT管VT的G端, 4端接到斩波电路中IGBT管VT的E端。分别将斩波电路的1与3.4与12.12与5
17、.6与14.15与13.13与2相连.照面板上的电路图接成buck chopper斩波器。观察负载电压波形。经检查电路无误后,按下开关s1、s8.用示波器观察VD1两端12、13孔之间电压.调节upw的电位器rp.即改变触发脉冲的占空比.观察负载电压的变化.并记录电压波形 观察负载电流波形。用示波器观察并记录负载电阻R4两端波形改变脉冲信号周期。在S2、S3、S4合上与断开多种情况下,重复步骤、改变电阻、电感参数。可将几个电感串联或并联以达到改变电感值的目的.也可改变电阻.观察并记录改变电路参数后的负载电压波形与电流波形.并分析电路工作状态。3boost chopper将UPW的输出端2端接到
18、斩波电路中IGBT管VT的G端, 4端接到斩波电路中IGBT管VT的E端。1照图接成boost chopper电路。电感和电容任选,负载电阻r选r4或r6。实验步骤同buck chopper。4buck-boost chopper将UPW的输出端2端接到斩波电路中IGBT管VT的G端, 4端接到斩波电路中IGBT管VT的E端。1照图接成buck-boost chopper电路。电感和电容任选,负载电阻r选r4或r6。实验步骤同buck chopper五实验结果分析实验数据及波形1.测量1端。记录不同频率时锯齿波的周期及幅值。开关情况对应频率锯齿波周期锯齿波幅值S1闭合87KHZ0.11ms23
19、9mVS1、S2闭合2.8KHZ0.36ms236mVS1、S2、S3闭合1.65KHZ0.61ms236mVS1、S2、S3、S4闭合339HZ2.95ms231mV输出最大与最小占空比测量:2.buck chopperaS1闭合负载电压波形: 负载电流波形:bS1、S2闭合负载电压波形: 负载电流波形:cS1、S2、S3、S4闭合负载电压波形: 负载电流波形:步骤2.5改变电感后3.boost choppera闭合S1 b闭合S1、S2c闭合S1、S2、S3、S4调思考题总结一下触发脉冲的占空比的改变对直流斩波电路负载电压的影响.为什么会有这样的影响。设输入电压为E.负载电压为U0.占空比
20、为电路类型占空比对负载电压U0的影响原因降压斩波电路U0随着的增大而增大.随其减小而减小;且U0EU0=E/升降压斩波电路U0随着的增大而增大.随其减小而减小;当00.5时.U0E;当0.5EU0=E/实验六 单相交直交变电路一实验目的熟悉单相交直交变频电路的组成.重点熟悉其中的单相桥式PWM逆变电路中元器件的作用.工作原理.对单相交直交变频电路驱动电机时的工作情况及其波形作全面分析.并研究正弦波的频率和幅值及三角波载波频率与电机机械特性的关系二实验内容1测量SPWM波形产生过程中的各点波形2观察变频电路驱动电机时的输出波形3观察电机工作情况三实验设备和仪器1电力电子及电气传动主控制屏2MMC
21、L-22组件3MMEL-03组件4双踪示波器5万用表四实验方法1SPWM波形的观察按下左下方的开关S5观察SPWM波形发生电路输出的正弦信号Ur波形.改变正弦波频率调节电位器.测试其频率可调范围。观察三角形载波Uc的波形.测出其频率,并观察Uc和Ur的对应关系。观察经过三角波和正弦波比较后得到的SPWM。2逻辑延时时间的测试按下左下方的开关S1 与S5将SPWM波形发生电路的3端与DLD的1端相连.用双踪示波器同时观察DLD的1和2端波形,并记录延时时间Td.。3同一桥臂上下管子驱动信号死区时间测试分别将隔离驱动的G和主回路的G相连用双踪示波器分别同时测量G1、E1和 G2、E2. G3、E3
22、和 G4、E2的死区时间。4不同负载时波形的观察按图5-19接线。先断开主电源和开关S1。将三相调压器的U、V、W接主电路的相应处.将主电路的1、3端相连.接好后.接通电源.将三相调压器输出调到180v1当负载为电阻时6、7端接一450欧电阻.观察负载电压的波形.记录其波形、幅值、频率。在正弦波Ur的频率可调范围内.改变Ur的频率多组.记录相应的负载电压、波形、幅值和频率。2当负载为电阻电感时6、7端接入电感和450欧电阻.观察负载电压和负载电流的波形。五实验结果分析三角形载波Uct波形SPWM波形DLD的1端和2端波形G1、E1G2、E2G3、E3G4、E4负载为电阻时.电压波形负载为阻感时.电压波形思考题:为何要设置死区时间?因为本实验采用的是无环流方式.负载电流反向时.为保证无环流.必须留一定的死区时间14 / 14