第21章《二次函数》复习ppt课件.ppt

上传人:小飞机 文档编号:1396872 上传时间:2022-11-18 格式:PPT 页数:43 大小:1.65MB
返回 下载 相关 举报
第21章《二次函数》复习ppt课件.ppt_第1页
第1页 / 共43页
第21章《二次函数》复习ppt课件.ppt_第2页
第2页 / 共43页
第21章《二次函数》复习ppt课件.ppt_第3页
第3页 / 共43页
第21章《二次函数》复习ppt课件.ppt_第4页
第4页 / 共43页
第21章《二次函数》复习ppt课件.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

《第21章《二次函数》复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《第21章《二次函数》复习ppt课件.ppt(43页珍藏版)》请在三一办公上搜索。

1、,二次函数复习课件,一、二次函数的定义,定义:一般地,形如y=axbxc ( a 、 b 、 c 是常数, a 0 )的函数叫做_. 定义要点:a 0 最高次数为2 代数式一定是整式 练习:1、y=-x,y=2x-2/x,y=100-5x,y=3x-2x+5,其中是二次函数的有_个。,2.当m_时,函数y=(m+1) - 2+1 是二次函数?,驶向胜利的彼岸,3,函数 当m取何值时,,(1)它是二次函数?(2)它是反比例函数?,(1)若是二次函数,则 且当 时,是二次函数。,(2)若是反比例函数,则 且当 时,是反比例函数。,小结:,二、二次函数的图象及性质,抛物线,顶点坐标,对称轴,位置,开

2、口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0),由a,b和c的符号确定,由a,b和c的符号确定,a0,开口向上,a0,开口向下,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,(0,c),(0,c),2、下列各图中可能是函数与 ( )的图象的是( ),小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得出字母的取值范围,再去检验这个字母的符号是否适合另一个图象.,3、画二次函数y=x2-x-6的图象,顶点坐标是_对称轴是_。,画二次函数的大致图

3、象:先配成顶点式,再按照以下步骤画:画对称轴确定顶点确定与y轴的交点确定与x轴的交点确定与y轴交点关于对称轴对称的点连线当然,细画抛物线应该按照:列表(在自变量的取值范围内列)、描点(要准)、连线(用平滑的曲线)三步骤来画。,(0,-6),(-2,0),(3,0),(1,-6),特别注意:在实际问题中画函数的图像时要注意自变量的取值范围,若图像是直线,则画图像时只取两个界点坐标来画(包括该点用实心点,不包括该点用空心圈);若是二次函数的图像,则除了要体现两个界点坐标外,还要取上能体现图像特征的其它一些点来画,3、二次函数y=x2-x-6的图象顶点坐标是_对称轴是_。,(0,-6),(-2,0)

4、,(3,0),(1,-6),增减性:,当 时,y随x的增大而减小当 时,y随x的增大而增大,最值:,当 时,y有最 值,是,小,函数值y的正负性:,当 时,y0当 时,y=0当 时,y0,x3,x=-2或x=3,-2x3,5、,(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。 (3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)求MAB的周长及面积。(5)x为何值时,y0?,已知二次函数,4.已知抛物线y=2x21上有两点(x1,y1 ) ,(x2,y2 )且x1x20,则y1 y

5、2(填“”或“”),2、已知抛物线顶点坐标(h, k)和一个普通点,通常设抛物线解析式为_,3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0)和另一个普通点,通常设解析式为_,1、已知抛物线上的三个普通点,通常设解析式为_,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),y=a(x-x1)(x-x2) (a0),三、求抛物线解析式的三种方法,练习,x=-2,(-2,-1),0,3、根据下列条件,求二次函数的解析式。,(1)、图象经过(0,0), (1,-2) , (2,3) 三点;,(2)、图象的顶点(2,3), 且经过点(3,1) ;,4、已知二次函数y=ax2+bx

6、+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。,解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1 顶点坐标为( 1 , 2)设二次函数的解析式为y=a(x-1)2+2又图象经过点(3,-6)-6=a (3-1)2+2 a=-2二次函数的解析式为y=-2(x-1)2+2即: y=-2x2+4x,a=-2, b=4, c=0,开口方向、大小: 向上a0 向下ao,对称轴与y轴比较 : 左侧ab同号 右侧ab异号,与y轴交点 : 交于正半轴co 负半轴c0,过原点c=0.,- 与1比较,- 与-1比较,与x轴交

7、点个数,令x=1,看纵坐标,令x=-1,看纵坐标,令x=2,看纵坐标,令x=-2,看纵坐标,四、有关a,b,c及b2-4ac符号的确定,典型例题1. 如图,是抛物线y=ax2+bx+c的图像,则a 0;b 0;c 0;a+b+c 0;a-b+c 0;b2-4ac 0;2a-b 0;,=,由形定数,典型例题2. 已知a0,c0,那么抛物线y=ax2+bx+c的顶点在( ),A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限,A,由数定形,3、已知二次函数y=ax2+bx+c的 图像如图所示,下列结论: a+b+c0,a-b+c0; abc0;b=2a 中正确个数为 ( ) A.4个 B

8、.3个 C.2个 D.1个,A,4、无论m为任何实数,二次函数y=x2-(2-m)x+m 的图像总是过点 ( ) A.(1,3) B.(1,0) C.(-1,3) D.(-1,0),C,当x= 1时,y=a+b+c,当x=-1时,y=a-b+c,a 0,x=,=-1,结论: 一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同。,五、二次函数抛物线的平移,温馨提示:二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数图象间的平移.,0,2,2,4,-2,-4,-2,4,2,6,2,x,y,y=x2-1,y=x2,y=x2,向下平移

9、 1个单位,y=x2-1,向左平移 2个单位,y=(x+2)2,y=(x+2)2,y=(x+2)2-1,(0,0),(-2,-1),y=(x+2)2-1,上下左右平移抓住 顶点的变化,例:,平移法则:左加右减,上加下减,练习二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向 平移 个单位可得到y=2(x-3)2的图象。二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2(x+1)2+2的图象。,下,3,右,3,左,1,上,2,六、二次函数与一元二次方程的关系,一元二次方程根的情况与b-4ac的关系我们知道:代数式b2-4ac

10、对于方程的根起着关键的作用.,归纳如下:,与x轴有两个不同的交点(x1,0)(x2,0),有两个不同的解x=x1,x=x2,b2-4ac0,与x轴有唯一个交点,有两个相等的解x1=x2=,b2-4ac=0,与x轴没有交点,没有实数根,b2-4ac0,例:已知二次函数y=2x2-(m+1)x+m-1,(1)求证:无论m为何值,函数y的图像与x轴总有交点,并指出当m为何值时,只有一个交点。,(2)当m为何值时,函数y的图像经过原点。,(3)指出(2)的图像中,使y0时, x的取值范围及使y0时, x的取值范围,2、求抛物线与y轴的交点坐标;与x轴的两个交点间的距离.x取何值时,y0?,1、不论x为

11、何值时,函数y=ax2+bx+c(a0)的值永远为正的条件是_,a0, b-4ac0,-3,1,6,(-1,8),-1,练习,3、(1)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=,此时抛物线 y=x2-2x+m与x轴有个交点.,(2)已知抛物线 y=x2 8x +c的顶点在 x轴上,则c=.,1,1,16,(3)一元二次方程3x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y=3x2+x-10与x轴的交点坐标是.,(-2、0)(5/3、0),3、如图, 已知抛物线y=ax+bx+3 (a0)与 x轴交于点A(1,0)和点B (3,0),与y轴

12、交于点C (1) 求抛物线的解析式;,(2)在(1)中抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.,Q,(1,0),(-3,0),(0,3),y=-x-2x+3,Q(-1,2),(3) 设抛物线的对称轴与 x轴交于点M ,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由,以M为圆心,MC为半径画弧,与对称轴有两交点;以C为圆心,MC为半径画弧,与对称轴有一个交点(MC为腰)。作MC的垂直平分线与对称轴有一个交点(MC为底边)。,(1,0),(-3,0),(0,3),(-1,0)

13、,八、二次函数在实际生活中的应用:,同学们,今天就让我们一起去体会生活中的数学给我们带来的乐趣吧!,(一)何时获得最大利润?,问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,来到商场,1、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围,(二)面积最

14、大问题:,来到农场,(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?并求出这个最大值(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围答案:(1)y302x(6x15)(2)当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃面积最大,最大值为112.5平方米(3)6x11,4、如图,在一面靠墙的空地上用长为24 m的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽AB为x m,面积为S m2。(1)求S与x的函数关系式及自变量的取值范围;,4、如图,在一面靠墙的空地上用长为24m的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽AB为xm,面积为Sm2

15、。(2)当x取何值时,所围成花圃的面积最大?最大值是多少?,4、如图,在一面靠墙的空地上用长为24m的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽AB为xm,面积为Sm2。(3)若墙的最大可用长度为8m,求围成的花圃的最大面积。,10、在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ的面积等于8cm2(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指

16、出自变量t的取值范围;t为何值时S最小?求出S的最小值。,例2、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?,(1)卡车可以通过.,提示:当x=1时,y =3.75, 3.7524.,(2)卡车可以通过.,提示:当x=2时,y =3, 324.,(5)投篮与二次函数,来到操场,1、一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地

17、面3米。,问此球能否投中?,3米,8米,4米,4米,0,x,y,如图,建立平面 直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:,(0 x8),(0 x8),篮圈中心距离地面3米,此球不能投中,若假设出手的角度和力度都不变,则如何才能使此球命中?,(1)跳得高一点,(2)向前平移一点,(4,4),(8,3),在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?,0 1 2 3 4 5 6 7 8 9,(8,3),(5,4),(4,4),0 1 2 3 4 5 6 7 8 9,在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈?,(,),用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:,建立直角坐标系,二次函数,问题求解,找出实际问题的答案,及时总结,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号