《合情推理讲解ppt课件.ppt》由会员分享,可在线阅读,更多相关《合情推理讲解ppt课件.ppt(49页珍藏版)》请在三一办公上搜索。
1、推理与证明,推理,证明,言之有理,论证有据!,第二章 推理与证明,2.1.1合情推理,已知的判断,新的判断,根据一个或几个已知的判断来确定一个新的判断的思维过程就叫推理.,10 3720 31730 1317,数学皇冠上璀璨的明珠哥德巴赫猜想,哥德巴赫猜想的过程:,归纳推理的过程:,由某类事物的 具有某些特征,推出该类事物的 都具有这些特征的推理,或者由 概括出 的推理,称为归纳推理(简称归纳).,部分对象,全部对象,个别事实,一般结论,归纳推理,佛教百喻经中有这样一则故事。 从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:要甜的,好吃的,你才买.仆人拿好钱就去了.到了果园,园主说:
2、我这里树上的芒果个个都是甜的,你尝一个看.仆人说:我尝一个怎能知道全体呢 我应当个个都尝过,尝一个买一个,这样最可靠.仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.,第一个芒果是甜的,第二个芒果是甜的,第三个芒果是甜的,这个果园的芒果都是甜的,某课题组为了解本市的高中生数学学习状态,对四所学校做了一个问卷调查,其中有两道题的统计数据如下:,根据这四所学校的情况,你能判断该市高中生对数学的普遍印象吗?,1,3,5,7,由此你猜想出第个数是_.,这就是从部分到整体,从个别到一般的归纳推理.,你想起来了吗?,1.已知数列 的第一项 =1,且 (
3、1,2,3,),请归纳出这个数列的通项公式为_.,让我们一起来归纳推理,2.如图所示,有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.(1)每次只能移动1个金属片;(2)较大的金属片不能放在较小的金属片上面;试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?,1,2,3,让我们一起来归纳推理,1,2,3,第1个圆环从1到3.,设 为把 个圆环从1号针移到3号针的最少次数,则,1时,,1,2时,,1,2,3,前1个圆环从1到2;第2个圆环从1到3;第1个圆环从2到3.,3,第1个圆环从1到3.,设 为把 个圆环从1号针移到3号针的最少次数,则,1时
4、,,1,n3时,,前2个圆环从1到2;第3个圆环从1到3;前2个圆环从2到3.,7,2时,,前1个圆环从1到2;第2个圆环从1到3;第1个圆环从2到3.,3,第1个圆环从1到3.,设 为把 个圆环从1号针移到3号针的最少次数,则,1时,,1,1,2,3,猜想 an=,2n -1,3.(05年广东)设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数.,当n 3 时, f(n)= .(用n表示),让我们一起来归纳推理,任何形如 的数都是质数这就是著名的费马猜想,观察到都是质数,进而猜想:,费马,半个世纪后,宣布了费马的这个猜想不成
5、立,它不能作为一个求质数的公式.以后,人们又陆续发现 不是质数.至今这样的反例共找到了46个,却还没有找到第6个正面的例子,也就是说目前只有n=0,1,2,3,4这5个情况下,Fn才是质数.,大胆猜想 小心求证,归纳推理的基础,归纳推理的作用,归纳推理,观察、分析,发现新事实、获得新结论,由部分到整体、个别到一般的推理,注意,归纳推理的结论不一定成立,可能有生命存在,有生命存在,温度适合生物的生存,一年中有四季的变更,有大气层,行星、围绕太阳运行、绕轴自转,火星,地球,火星上是否存在生命,火星与地球类比的思维过程:,火星,地球,存在类似特征,由两类对象具有某些类似特征和其中一类对象的某些已知特
6、征,推出另一类对象也具有这些特征的推理称为类比推理.,类比推理,简言之,类比推理是由特殊到特殊的推理,类比推理的几个特点;,1.类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果.,2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.,3.类比的结果是猜测性的不一定可靠,单它却有发现的功能.,我们已经学习过“等差数列”与“等比数列”.,你是否想过“等和数列”、“等积数列” ?,从第二项起,每一项与其前一项的差等于一个常数的数列是等差数列.,从第二项起,每一项与其前一项的和等于一个常数的数列是等和数列.,例1、试根据等式的性质猜想不等式的性质。
7、,等式的性质:(1) a=ba+c=b+c;(2) a=b ac=bc;(3) a=ba2=b2;等等。,猜想不等式的性质:,(1) aba+cb+c;,(2) ab acbc;,(3) aba2b2;等等。,让我们一起来类比推理,类比推理的结论不一定成立.,例2:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想,s1,s2,s3,c2=a2+b2,让我们一起来类比推理,总结:1.进行类比推理的步骤:,(1)找出两类对象之间可以确切表述的相似特征;,(2)用一类对象的已知特征去猜测另一类对象的特征,从而得出一个猜想;,(3)检验这个猜想.,2、类比推理的一般模式:,所以B类事物可能
8、具有性质d.,A类事物具有性质a,b,c,d,B类事物具有性质a,b,c,(a,b,c与a,b,c相似或相同),观察、比较,联想、类推,猜想新结论,1.如图,在平行四边形 中,有 那么,在平行六面体 中,有,练习:,运用类比法的关键是:寻找一个合适的类比对象,类比推理,类比推理,以旧的知识为基础,推测新的结果,具有发现的功能,由特殊到特殊的推理,类比推理的结论不一定成立,注意,类比推理,由特殊到特殊的推理;,以旧的知识为基础,推测新的结果;,结论不一定成立.,归纳推理,由部分到整体、特殊到一般的推理;,以观察分析为基础,推测新的结论;,具有发现的功能;,结论不一定成立.,具有发现的功能;,归纳
9、推理和类比推理的过程,通俗地说,合情推理是指“合乎情理”的推理.,2由上图(左)有面积关系:,则由上图(右),则类似的结论是:,3:(2001年上海)已知两个圆x2+y2=1:与x2+(y-3)2=1,则由式减去式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为-.,(x-a)2+(y-b)2=r2与(x-c)2+(y-d)2=r2(ac或,设圆的方程为,bd),则由式减去式可得上述两圆的对称轴,方程.,4.在平面上,设ha,hb,hc是三角形ABC三条边上的高.P为三角形内任一点,P到相应三边的
10、距离分别为pa,pb,pc,我们可以得到结论:试通过类比,写出在空间中的类似结论.,A,B,C,P,pa,pb,pc,A,B,C,D,P,善于观察勤于思考敢于猜想的人,常常会冒出创造的灵感火花,再 见,铜能导电铝能导电金能导电银能导电,三角形内角和为凸四边形内角和为凸五边形内角和为,第一个芒果是甜的第二个芒果是甜的第三个芒果是甜的,第一个数为2第二个数为4第三个数为6第四个数为8,铜能导电铝能导电金能导电银能导电,三角形内角和为凸四边形内角和为凸五边形内角和为,第一个芒果是甜的第二个芒果是甜的第三个芒果是甜的,第一个数为2第二个数为4第三个数为6第四个数为8,部分个别,整 体一 般,分析:面积
11、法,A,B,C,D,O,O,例2.,图(1),图(2),观察下面图形规律,在其右下角的空格内画上合适的图形为( )A. B. C. D. ,一年夏天,鲁班上山砍树,因为坡陡路滑,而且横七竖八地长满了小树、杂草,行走非常不便。鲁班只好搀着树木、拽着茅草往上爬。忽然,脚底一滑,身体便顺着山坡往下滚去,鲁班急中生智,急忙抓住一把茅草,由于没有抓牢,反而感到手掌心疼痛无比。滑到山脚,鲁班狼狈地爬了起来,伸开手掌一看,掌心已是鲜血淋漓。鲁班非常惊奇,为何一把茅草能够划破人的手掌。鲁班顾不得疼痛,沿着滑下来的山坡,爬上去一看,这丛茅草与别的草没有两样。鲁班不甘心,便揪下一根茅草仔细地观察起来。这茅草的叶子很怪,叶子两边都长着锋利的小细齿,人手握紧它一拽,手掌就会被划破。鲁班又试着用茅草在他的手指上拉了一下,果然又划开一道血口。鲁班从这件事中得到启发,心想:如果仿照茅草细齿,来做一件边缘带有细齿的工具,用它来锯树,岂不比斧砍更快、更好吗?鲁班忘记疼痛,转身下山,做起试验来。在金属工匠的帮助下,鲁班做了一把带有许多细齿的铁条。鲁班将这件工具拿去锯树,果然又快又省力。锯子就这样发明了。,