高数第九章(6)多元函数微分学的几何应用ppt课件.ppt

上传人:牧羊曲112 文档编号:1826732 上传时间:2022-12-20 格式:PPT 页数:35 大小:1.22MB
返回 下载 相关 举报
高数第九章(6)多元函数微分学的几何应用ppt课件.ppt_第1页
第1页 / 共35页
高数第九章(6)多元函数微分学的几何应用ppt课件.ppt_第2页
第2页 / 共35页
高数第九章(6)多元函数微分学的几何应用ppt课件.ppt_第3页
第3页 / 共35页
高数第九章(6)多元函数微分学的几何应用ppt课件.ppt_第4页
第4页 / 共35页
高数第九章(6)多元函数微分学的几何应用ppt课件.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《高数第九章(6)多元函数微分学的几何应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《高数第九章(6)多元函数微分学的几何应用ppt课件.ppt(35页珍藏版)》请在三一办公上搜索。

1、第六节,复习 目录 上页 下页 返回 结束,二、空间曲线的切线与法平面,三、曲面的切平面与法线,多元函数微分学的几何应用,第九章,一、一元向量值函数及其导数,一、一元向量值函数及其导数,定义: 设数集 ,则称映射,为一元向量值函数,通常记为:,其中D称为函数的定义域,t称为自变量,r称为因变量。,注1: 我们只讨论n=3的情形,此时,向量值函数可以表示为,注2:注意定义域与值域中距离函数的不同。,注4:一元向量值函数r=f(t),tD与空间曲线一一对应。,注3:向量值函数与数量值函数的不同,数量可以比较大小,但是向量不能比较大小。,定义1(向量值函数的极限),注:,定义(向量值函数的连续),注

2、:,定义2(向量值函数的导数或导向量),注:,运算法则:,导向量的几何意义:,导向量的物理意义:,例1.,例2.,复习: 平面曲线的切线与法线,已知平面光滑曲线,切线方程,法线方程,若平面光滑曲线方程为,故在点,切线方程,法线方程,在点,有,有,因,机动 目录 上页 下页 返回 结束,二、空间曲线的切线与法平面,过点 M 与切线垂直的平面称为曲线在该点的法,机动 目录 上页 下页 返回 结束,位置.,空间光滑曲线在点 M 处的切线为此点处割线的极限,平面.,点击图中任意点动画开始或暂停,1. 曲线方程为参数方程的情况,切线方程,机动 目录 上页 下页 返回 结束,此处要求,也是法平面的法向量,

3、切线的方向向量:,称为曲线的切向量 .,如个别为0, 则理解为分子为 0 .,机动 目录 上页 下页 返回 结束,不全为0,因此得法平面方程,说明: 若引进向量函数, 则 ,处的导向量,就是该点的切向量.,例1.,求圆柱螺旋线,对应点处的切线方程和法平面方程.,切线方程,法平面方程,即,即,解: 由于,对应的切向量为,在,机动 目录 上页 下页 返回 结束, 故,2. 曲线为一般式的情况,光滑曲线,当,曲线上一点, 且有,时, 可表示为,处的切向量为,机动 目录 上页 下页 返回 结束,则在点,切线方程,法平面方程,有,或,机动 目录 上页 下页 返回 结束,也可表为,法平面方程,机动 目录

4、上页 下页 返回 结束,例2. 求曲线,在点,M ( 1,2, 1) 处的切线方程与法平面方程.,切线方程,解法1 令,则,即,切向量,机动 目录 上页 下页 返回 结束,法平面方程,即,机动 目录 上页 下页 返回 结束,解法2. 方程组两边对 x 求导, 得,曲线在点 M(1,2, 1) 处有:,切向量,解得,切线方程,即,法平面方程,即,点 M (1,2, 1) 处的切向量,机动 目录 上页 下页 返回 结束,三、曲面的切平面与法线,设 有光滑曲面,通过其上定点,对应点 M,切线方程为,不全为0 .,则 在,且,点 M 的切向量为,任意引一条光滑曲线,下面证明:,此平面称为 在该点的切平

5、面.,机动 目录 上页 下页 返回 结束, 上过点 M 的任何曲线在该点的切线都,在同一平面上.,证:,机动 目录 上页 下页 返回 结束,在 上,得,令,由于曲线 的任意性 ,的平面上 ,从而切平面存在 .,曲面 在点 M 的法向量,法线方程,切平面方程,复习 目录 上页 下页 返回 结束,曲面,时,则在点,故当函数,法线方程,令,特别, 当光滑曲面 的方程为显式,在点,有连续偏导数时,切平面方程,机动 目录 上页 下页 返回 结束,法向量,用,将,法向量的方向余弦:,表示法向量的方向角,并假定法向量方向,分别记为,则,向上,复习 目录 上页 下页 返回 结束,例3. 求球面,在点(1 ,

6、2 , 3) 处的切,平面及法线方程.,解:,所以球面在点 (1 , 2 , 3) 处有:,切平面方程,即,法线方程,法向量,令,机动 目录 上页 下页 返回 结束,例4. 确定正数 使曲面,在点,解: 二曲面在 M 点的法向量分别为,二曲面在点 M 相切, 故,又点 M 在球面上,于是有,相切.,与球面,机动 目录 上页 下页 返回 结束, 因此有,1. 空间曲线的切线与法平面,切线方程,法平面方程,1) 参数式情况.,空间光滑曲线,切向量,内容小结,机动 目录 上页 下页 返回 结束,切线方程,法平面方程,空间光滑曲线,切向量,2) 一般式情况.,机动 目录 上页 下页 返回 结束,空间光

7、滑曲面,曲面 在点,法线方程,1) 隐式情况 .,的法向量,切平面方程,2. 曲面的切平面与法线,机动 目录 上页 下页 返回 结束,空间光滑曲面,切平面方程,法线方程,2) 显式情况.,法线的方向余弦,法向量,机动 目录 上页 下页 返回 结束,思考与练习,1. 如果平面,与椭球面,相切,提示: 设切点为,则,机动 目录 上页 下页 返回 结束,(二法向量平行),(切点在平面上),(切点在椭球面上),证明 曲面,上任一点处的,切平面都通过原点.,提示: 在曲面上任意取一点,则通过此,作业 P100 4,6,8,10, 11, 12,2. 设 f ( u ) 可微,第七节 目录 上页 下页 返回 结束,证明原点坐标满足上述方程 .,点的切平面为,1. 证明曲面,与定直线平行,证: 曲面上任一点的法向量,取定直线的方向向量为,则,(定向量),故结论成立 .,的所有切平面恒,备用题,机动 目录 上页 下页 返回 结束,2. 求曲线,在点(1,1,1) 的切线,解: 点 (1,1,1) 处两曲面的法向量为,因此切线的方向向量为,由此得切线:,法平面:,即,与法平面.,机动 目录 上页 下页 返回 结束,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号