高等数学(下)无穷级数ppt课件.ppt

上传人:牧羊曲112 文档编号:1870278 上传时间:2022-12-22 格式:PPT 页数:100 大小:3.11MB
返回 下载 相关 举报
高等数学(下)无穷级数ppt课件.ppt_第1页
第1页 / 共100页
高等数学(下)无穷级数ppt课件.ppt_第2页
第2页 / 共100页
高等数学(下)无穷级数ppt课件.ppt_第3页
第3页 / 共100页
高等数学(下)无穷级数ppt课件.ppt_第4页
第4页 / 共100页
高等数学(下)无穷级数ppt课件.ppt_第5页
第5页 / 共100页
点击查看更多>>
资源描述

《高等数学(下)无穷级数ppt课件.ppt》由会员分享,可在线阅读,更多相关《高等数学(下)无穷级数ppt课件.ppt(100页珍藏版)》请在三一办公上搜索。

1、无穷级数,无穷级数,数项级数,幂级数,傅氏级数(数一),第十一章,常数项级数的概念和性质,一、常数项级数的概念,二、无穷级数的基本性质,三、级数收敛的必要条件,第一节,第十一章,一、常数项级数的概念,引例 用圆内接正多边形面积逼近圆面积.,依次作圆内接正,边形,这个和逼近于圆的面积 A .,设 a0 表示,即,内接正三角形面积,ak 表示边数,增加时增加的面积,则圆内接正,定义:,给定一个数列,将各项依,即,称上式为无穷级数,,其中第 n 项,叫做级数的一般项,级数的前 n 项和,称为级数的部分和.,次相加, 简记为,当级数收敛时, 称差值,为级数的余项.,则称无穷级数发散 .,显然,收敛 ,

2、则称无穷级数,并称 S 为级数的和,记作,例1. 讨论等比级数,(又称几何级数),( q 称为公比 ) 的敛散性.,解: 1) 若,从而,因此级数收敛 ,从而,则部分和,因此级数发散 .,其和为,2). 若,因此级数发散 ;,因此,n 为奇数,n 为偶数,从而,综合 1)、2)可知,时, 等比级数收敛 ;,时, 等比级数发散 .,则,级数成为,不存在 , 因此级数发散.,例2. 判别下列级数的敛散性:,解: (1),所以级数 (1) 发散 ;,技巧:,利用 “拆项相消” 求和,(2),所以级数 (2) 收敛, 其和为 1 .,技巧:,利用 “拆项相消” 求和,二、无穷级数的基本性质,性质1.

3、若级数,收敛于 S ,则各项,乘以常数 c 所得级数,也收敛 ,说明: 级数各项乘以非零常数后其敛散性不变 .,即,其和为 c S .,性质2. 设有两个收敛级数,则级数,也收敛, 其和为,说明:,(2) 若两级数中一个收敛一个发散 , 则,必发散 .,但若二级数都发散 ,不一定发散.,例如,(1) 性质2 表明收敛级数可逐项相加或减 .,性质3.,在级数前面加上或去掉有限项, 不会影响级数,的敛散性.,性质4.,收敛级数加括弧后所成的级数仍收敛于原级数,的和.,推论: 若加括弧后的级数发散, 则原级数必发散.,注意: 收敛级数去括弧后所成的级数不一定收敛.,但,发散.,例如,,三、级数收敛的

4、必要条件,性质5、设收敛级数,则必有,可见: 若级数的一般项不趋于0 , 则级数必发散 .,例如,其一般项为,不趋于0,因此这个级数发散.,注意:,并非级数收敛的充分条件.,例如, 调和级数,虽然,但此级数发散 .,事实上 , 假设调和级数收敛于 S , 则,但,矛盾!,所以假设不真 .,二、交错级数及其审敛法,三、绝对收敛与条件收敛,第二节,一、正项级数及其审敛法,常数项级数的审敛法,第十一章,一、正项级数及其审敛法,若,定理 1. 正项级数,收敛,部分和序列,有界 .,则称,为正项级数 .,定理2 (比较审敛法),设,且存在,对一切,有,(1) 若强级数,则弱级数,(2) 若弱级数,则强级

5、数,则有,收敛 ,也收敛 ;,发散 ,也发散 .,是两个正项级数,(常数 k 0 ),例1. 讨论 p 级数,(常数 p 0),的敛散性.,解: 1) 若,因为对一切,而调和级数,由比较审敛法可知 p 级数,发散 .,发散 ,因为当,故,考虑强级数,的部分和,故强级数收敛 , 由比较审敛法知 p 级数收敛 .,时,2) 若,调和级数与 p 级数是两个常用的比较级数.,若存在,对一切,证明级数,发散 .,证: 因为,而级数,发散,根据比较审敛法可知,所给级数发散 .,例2.,定理3. (比较审敛法的极限形式),则有,两个级数同时收敛或发散 ;,(2) 当 l = 0,(3) 当 l =,设两正项

6、级数,满足,(1) 当 0 l 时,是两个正项级数,(1) 当 时,两个级数同时收敛或发散 ;,特别取,可得如下结论 :,对正项级数,(2) 当 且 收敛时,(3) 当 且 发散时,也收敛 ;,也发散 .,的敛散性.,例3. 判别级数,的敛散性 .,解:,根据比较审敛法的极限形式知,例4. 判别级数,解:,根据比较审敛法的极限形式知,定理4 . 比值审敛法 ( Dalembert 判别法),设,为正项级数, 且,则,(1) 当,(2) 当,时, 级数收敛 ;,或,时, 级数发散 .,说明: 当,时,级数可能收敛也可能发散.,例如, p 级数,但,级数收敛 ;,级数发散 .,例5. 讨论级数,的

7、敛散性 .,解:,根据定理4可知:,级数收敛 ;,级数发散 ;,例6. 讨论级数,的敛散性 .,定理5. 根值审敛法 ( Cauchy判别法),设,为正项级,则,数, 且,时 , 级数可能收敛也可能发散 .,例如 , p 级数,说明 :,但,级数收敛 ;,级数发散 .,例7. 讨论级数,的敛散性 .,例8. 讨论级数,的敛散性 .,二 、交错级数及其审敛法,则各项符号正负相间的级数,称为交错级数 .,定理6 . ( Leibnitz 判别法 ),若交错级数满足条件:,则级数,收敛 , 且其和,其余项满足,收敛,收敛,用Leibnitz 判别法判别下列级数的敛散性:,收敛,上述级数各项取绝对值后

8、所成的级数是否收敛 ?,发散,收敛,收敛,三、绝对收敛与条件收敛,定义: 对任意项级数,若,若原级数收敛, 但取绝对值以后的级数发散, 则称原级,收敛 ,数,为条件收敛 .,均为绝对收敛.,例如 :,绝对收敛 ;,则称原级,数,条件收敛 .,定理7. 绝对收敛的级数一定收敛 .,说明:上述逆定理不一定成立。,即,发散,发散,例9. 证明下列级数绝对收敛 :,证: (1),而,收敛 ,收敛,因此,绝对收敛 .,(2) 令,因此,收敛,绝对收敛.,内容小结,1. 利用部分和数列的极限判别级数的敛散性,2. 利用正项级数审敛法,必要条件,发 散,满足,比值审敛法,根值审敛法,收 敛,发 散,不定,比

9、较审敛法,用它法判别,积分判别法,部分和极限,3. 任意项级数审敛法,为收敛级数,Leibniz判别法:,则交错级数,收敛,概念:,绝对收敛,条件收敛,例1、(06,一,三),若,则级数( ),A、,B、,C、,D、,例2、(05,三)设,若,则下列结论正确的是( ),A、,B、,C、,D、,第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,第十一章,一、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,对,若常数项级数,敛点,所有收敛点的全体称为其收敛域 ;,若常数项级数,为定义在区间 I 上的函数, 称,收敛,发散 ,所有,为其收,为其发散点,发散点

10、的全体称为其发散域 .,为级数的和函数 , 并写成,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和, 即,在收敛域上, 函数项级数的和是 x 的函数,称它,例如, 等比级数,它的收敛域是,它的发散域是,或写作,又如, 级数,级数发散 ;,所以级数的收敛域仅为,有和函数,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如, 幂级数,为幂级数的系数 .,即是此种情形.,的情形, 即,称,收敛,发散,定理 1. ( Abel定理 ),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,

11、则对满足不等式,幂级数在 (, +) 收敛 ;,由Abel 定理可以看出,中心的区间.,用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为,则,R = 0 时,幂级数仅在 x = 0 收敛 ;,R = 时,幂级数在 (R , R ) 收敛 ;,(R , R ) 加上收敛的端点称为收敛域.,R 称为收敛半径 ,,在R , R ,可能收敛也可能发散 .,外发散;,在,(R , R ) 称为收敛区间.,定理2. 若,的系数满足,1) 当 0 时,2) 当 0 时,3) 当 时,则,的收敛半径为,说明:据此定理,对端点 x =1,的收敛半径及收敛域.,解:,对端点 x = 1, 级数为交错级数,收

12、敛;,级数为,发散 .,故收敛域为,例1.求幂级数,例2. 求下列幂级数的收敛域 :,解: (1),所以收敛域为,(2),所以级数仅在 x = 0 处收敛 .,规定: 0 ! = 1,例3.,的收敛半径 .,解: 级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径.,时级数收敛,时级数发散,故收敛半径为,故直接由,例4.,的收敛域.,解: 令,级数变为,当 t = 2 时, 级数为,此级数发散;,当 t = 2 时, 级数为,此级数条件收敛;,因此级数的收敛域为,故原级数的收敛域为,即,三、幂级数的运算,定理3. 设幂级数,及,的收敛半径分别为,令,则有 :,其中,说明:,两个幂级数相

13、除所得幂级数的收敛半径可能比,原来两个幂级数的收敛半径小得多.,例如, 设,它们的收敛半径均为,但是,其收敛半径只是,定理4 若幂级数,的收敛半径,则其和函,在收敛域上连续,且在收敛区间内可逐项求导与,逐项求积分,运算前后收敛半径相同:,注: 逐项积分时, 运算前后端点处的敛散性不变.,例5. 求级数,的和函数,解: 易求出幂级数的收敛半径为 1 ,及,收敛 ,因此由和函数的连续性得:,而,及,内容小结,1. 求幂级数收敛域的方法,1) 对标准型幂级数,先求收敛半径 , 再讨论端点的收敛性 .,2) 对非标准型幂级数(缺项或通项为复合式),求收敛半径时直接用比值法或根值法,2. 幂级数的性质,

14、两个幂级数在公共收敛区间内可进行加、减与,也可通过换元化为标准型再求 .,乘法运算.,2) 在收敛区间内幂级数的和函数连续;,3) 幂级数在收敛区间内可逐项求导和求积分.,第四节,两类问题:,在收敛域内,和函数,本节内容:,一、泰勒 ( Taylor ) 级数,二、函数展开成幂级数,函数展开成幂级数,第十一章,一、泰勒 ( Taylor ) 级数,其中,( 在 x 与 x0 之间),称为拉格朗日余项 .,则在,若函数,的某邻域内具有 n + 1 阶导数,此式称为 f (x) 的 n 阶泰勒公式 ,该邻域内有 :,为f (x) 的泰勒级数 .,则称,当x0 = 0 时, 泰勒级数又称为麦克劳林级

15、数 .,1) 对此级数, 它的收敛域是什么 ?,2) 在收敛域上 , 和函数是否为 f (x) ?,待解决的问题 :,若函数,的某邻域内具有任意阶导数,定理1 .,各阶导数,则 f (x) 在该邻域内能展开成泰勒级数的充要,条件是,f (x) 的泰勒公式中的余项满足:,设函数 f (x) 在点 x0 的某一邻域,内具有,定理2.,若 f (x) 能展成 x 的幂级数, 则这种展开式是,唯一的 , 且与它的麦克劳林级数相同.,二、函数展开成幂级数,1. 直接展开法,由泰勒级数理论可知,第一步 求函数及其各阶导数在 x = 0 处的值 ;,第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;,第

16、三步 判别在收敛区间(R, R) 内,是否为,骤如下 :,展开方法,直接展开法, 利用泰勒公式,间接展开法, 利用已知其级数展开式,0.,的函数展开,例1. 将函数,展开成 x 的幂级数.,解:,其收敛半径为,对任何有限数 x , 其余项满足,故,( 在0与x 之间),故得级数,当 m = 1 时,2. 间接展开法,利用一些已知的函数展开式及幂级数的运算性质,例4. 将函数,展开成 x 的幂级数.,解: 因为,把 x 换成, 得,将所给函数展开成 幂级数.,例5. 将函数,展开成 x 的幂级数.,解:,从 0 到 x 积分, 得,定义且连续,区间为,利用此题可得,上式右端的幂级数在 x 1 收

17、敛 ,所以展开式对 x 1 也是成立的,于是收敛,例6. 将,展成,解:,的幂级数.,例7. 将,展成 x1 的幂级数.,解:,(06,一)将,展成关于x的幂级数,内容小结,1. 函数的幂级数展开法,(1) 直接展开法, 利用泰勒公式 ;,(2) 间接展开法, 利用幂级数的性质及已知展开,2. 常用函数的幂级数展开式,式的函数 .,当 m = 1 时,第七节,一、三角级数及三角函数系的正交性,二、函数展开成傅里叶级数,三、正弦级数和余弦级数,第十一章,傅里叶级数,一、三角级数及三角函数系的正交性,简单的周期运动 :,(谐波函数),( A为振幅,复杂的周期运动 :,令,得函数项级数,为角频率,为

18、初相 ),(谐波迭加),称上述形式的级数为三角级数.,定理 1. 组成三角级数的函数系,证:,同理可证 :,正交 ,上的积分等于 0 .,即其中任意两个不同的函数之积在,上的积分不等于 0 .,且有,但是在三角函数系中两个相同的函数的乘积在,二、函数展开成傅里叶级数,定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且,右端级数可逐项积分, 则有,叶系数为系数的三角级数 称为,的傅里叶系数 ;,由公式 确定的,的傅里,的傅里叶级数 .,称为函数,以,定理3 (收敛定理, 展开定理),设 f (x) 是周期为2的,周期函数,并满足狄利克雷( Dirichlet )条件:,1) 在一个周

19、期内连续或只有有限个第一类间断点;,2) 在一个周期内只有有限个极值点,则 f (x) 的傅里叶级数收敛 , 且有,x 为间断点,其中,为 f (x) 的傅里叶系数 .,x 为连续点,注意: 函数展成傅里叶级数的条件比展成幂级数的条件低得多.,例1.,设 f (x) 是周期为 2 的周期函数 , 它在,上的表达式为,解: 先求傅里叶系数,将 f (x) 展成傅里叶级数.,1) 根据收敛定理可知,时,级数收敛于,2) 傅氏级数的部分和逼近,说明:,f (x) 的情况见右图.,例2.,上的表达式为,将 f (x) 展成傅里叶级数.,解:,设 f (x) 是周期为 2 的周期函数 , 它在,说明:

20、当,时, 级数收敛于,周期延拓,傅里叶展开,上的傅里叶级数,定义在 ,上的函数 f (x)的傅氏级数展开法,其它,例3. 将函数,级数 .,则,解: 将 f (x)延拓成以,展成傅里叶,2为周期的函数 F(x) ,利用此展式可求出几个特殊的级数的和.,当 x = 0 时, f (0) = 0 , 得,说明:,设,已知,又,三、正弦级数和余弦级数,1. 周期为2 的奇、偶函数的傅里叶级数,定理4 . 对周期为 2 的奇函数 f (x) , 其傅里叶级数为,周期为2的偶函数 f (x) , 其傅里叶级数为余弦级数 ,它的傅里叶系数为,正弦级数,它的傅里叶系数为,例4. 设,的表达式为 f (x)x

21、 ,将 f (x) 展成傅里叶级数.,是周期为2 的周期函数,它在,解: 若不计,周期为 2 的奇函数,因此,n1,根据收敛定理可得 f (x) 的正弦级数:,级数的部分和,n2,n3,n4,逼近 f (x) 的情况见右图.,n5,例5. 将周期函数,展成傅里叶级数, 其,中E 为正常数 .,解:,是周期为2 的,周期偶函数 , 因此,2. 在0,上的函数展成正弦级数与余弦级数,周期延拓 F (x),f (x) 在 0 , 上展成,周期延拓 F (x),余弦级数,奇延拓,偶延拓,正弦级数,f (x) 在 0 , 上展成,例6. 将函数,分别展成正弦级,数与余弦级数 .,解: 先求正弦级数.,去

22、掉端点, 将 f (x) 作奇周期延拓,注意:,在端点 x = 0, , 级数的和为0 ,与给定函数,因此得,f (x) = x + 1 的值不同 .,再求余弦级数.,将,则有,作偶周期延拓 ,说明: 令 x = 0 可得,即,内容小结,1. 周期为 2 的函数的傅里叶级数及收敛定理,其中,注意: 若,为间断点,则级数收敛于,2. 周期为 2 的奇、偶函数的傅里叶级数,奇函数,正弦级数,偶函数,余弦级数,3. 在 0 , 上函数的傅里叶展开法,作奇周期延拓 ,展开为正弦级数,作偶周期延拓 ,展开为余弦级数,叶级数展式为,则其中系,提示:,利用“偶倍奇零”,(93 考研),的傅里,为正弦 级数.,推广,1. 周期为2l 的函数的傅里叶级数展开公式,(x 间断点),其中,当f (x)为奇 函数时,(偶),(余弦),2. 在任意有限区间上函数的傅里叶展开法,变换,延拓,3. 傅里叶级数的复数形式,利用欧拉公式导出,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号