《数控技术专业毕业设计.doc》由会员分享,可在线阅读,更多相关《数控技术专业毕业设计.doc(37页珍藏版)》请在三一办公上搜索。
1、毕业设计标 题轴类零件工艺设计 学生姓名 系 部 机械工程系 专 业 数控技术 班 级 指导老师 校外指导老师 目录摘要41绪论51.1数控技术的现状与发展趋势52. 零件工艺分析62.1零件的用途62.2零件图工艺分析62.3零件毛坯及材料的选择73.加工设备及辅助工具的选择93.1机床的选择93.2刀具的选择93.3量具的选择103.4夹具的选择104.拟定工艺方案114.1加工工序的划分114.2 加工顺序的确定114.3加工路线的确定124.4零件定位基准的确定144.5装夹方式的确定154.6工作坐标原点与换刀点的确定165.切削用量选择175.1背吃刀量的确定175.2主轴转速的确
2、定175.3进给速度的确定196.切削液的选择207.工艺文件的制定及程序编制217.1数控加工工艺卡217.2刀具卡227.3程序编制238机械加工精度及零件表面质量318.1机械加工精度318.2零件表面质量31结论33参考文献34附录35后记36摘要数控加工工艺是数控编程与操作的基础,合理的工艺是保证数控加工质量、发挥数控机床效能的前提条件。因此本文主要是对轴类零件的数控加工工艺进行分析,详细地阐述了轴类零件的加工工艺分析及制定加工方案的整个设计过程。该轴类零件的结构特点是由圆柱、圆弧、椭圆弧、螺纹、槽等组成内外表面的回转体。零件的加工过程是首先用粗基准定位,加工出精基准表面;然后采用精
3、基准定位,加工零件的其他表面。工艺路线的拟订是制订工艺规程的关健,它与定位基准的选择有密切关系。其次在机床、刀具、夹具切削用量的选择中,着重考虑到其对零件的加工的因素,为工艺设计节省了大量的时间。提高了设计效率。本文内容大致介绍了数控技术的发展趋势、对零件加工工艺步骤分析以及数控编程等。利用计算机辅助设计-AuToCAD绘制椭圆轴的二维图,用G代码指令进行手工编程并制定了相关的工艺文件,最后对机械加工精度及零件表面质量进行分析。 关键词:数控技术、轴类零件、工艺设计 、程序编制1绪论1.1 数控技术的现状与发展趋势随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,
4、对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,C
5、AD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。因此,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。由于电子技术、信息技术、网络技术、模糊控制技术的不断发展使得新一代数控技术水平大大的提高,促进了数控机床产业的蓬勃发展,也促进了现代制造技术
6、的快速发展。数控机床正朝着高速度、高精度、高可靠性和复合化、网络化、智能化、柔性化和绿色化等方面发展。新一代数控系统正向PC化和开放式体系结构方向发展;驱动装置向交流、数字化方向发展;增强通信功能,向网络化发展;数控系统在控制性能上向智能化发展。现代制造业正在迎来一场新的技术革命。2. 零件工艺分析2.1零件的用途图中所设计的零件为一复杂的轴类零件,而轴类零件又是机器中经常遇到的典型零件之一。它主要用来连接和支承传动零部件,传递扭矩和承受载荷,图示的零件也不例外。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分
7、为光轴、阶梯轴、空心轴和曲轴等,图示零件则为阶梯轴。所以,图中所示零件的用途是连接其它配合件,起的作用是支承其它传动零部件,传递扭矩和承受载荷,可用于汽车、机械等行业。2.2零件图工艺分析2-2 椭圆球轴类零件图加工出合格的零件,首先要对该零件图纸进行分析,如上图所示,该零件是由螺纹、圆柱、圆弧、椭圆弧、槽等表面组成,总长度为100mm,其中有较严格的直径尺寸精度要求如f36 -00.05mm 、f30+00.05 mmf38-00.05 mm 、f20-00.05mm,轴线长度的精度如400.05mm、1000.05 mm。粗糙度要求槽面3.2、其他表面为1.6。经过以上分析,我可以采用以下
8、几点工艺措施:(1)椭圆轴外圆轮廓的尺寸精度都是要求公差在0-0.05范围之内.因此编程时可以按整数编,粗加工过后,精加工之前统一进行磨耗调整,使得零件精度得到保证,即在磨耗调整中输入-0.025。若因加工误差导致零件加工出偏少则在磨耗中加一个数值,若零件加工出偏大则减一个数值。总之根据实际情况调整尽量使零件加工后尺寸处于公差范围中间值。 (2)在轮廓曲线上,有一处椭圆弧与阶梯轴相连,为了保证其椭圆起点与阶梯轴的端部相连的准确性,通过椭圆公式,及所给已知条件算出椭圆弧起点坐标为(22.98,12.144)。(3)零件的右端是由外螺纹,圆柱、圆弧、槽等表面组成,且每段圆柱轴的长度很少,显然不好装
9、夹,因此为了保证工件的定位准确、稳定、夹紧方便可靠、支撑面积大、便于装夹,所以应留在最后加工,先装夹毛坯加工左端内、外表面及圆柱f38 mm。再调头装夹f36 mm的圆柱加工右端。2.3零件毛坯及材料的选择轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式及毛坯材料。对于外圆直径之间相差不大的阶梯轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。 由于该零件的进行机械要求不是很高且阶梯轴外圆直径相差不大,故毛坯选用棒料。毛坯规格选择为f40120 mm。如下图所示:图2-345号钢是轴类零件的
10、常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达4552HRC。由于该零件无很高的机械性能要求,因此该零件材料选用45号钢。3.加工设备及辅助工具的选择3.1机床的选择根据该零件外形属于轴类零件,比较适合在车床上加工,又经过对零件图尺寸及形状分析,尺寸精度较高且要加工椭圆弧及内腔,普通机床不能加工出该零件的形状,也很难保证其尺寸精度、表面粗糙度,为了保证零件的加工尺寸精度和表面质量,因此选用数控车床,由于我们学校现在使用的是FANUC数控系统,所以利用学校资源。我选择在本校的数控机床FANUC-CK6140加工该零件。
11、数控机床FANUC-CK6140实物图见附录一。3.2刀具的选择刀具的选择是数控加工中重要的工艺内容之一,它不仅影响机床的加工效率,而且直接影响加工质量。编程时,选择刀具通常要考虑机床的加工能力、工序内容、工件材料等因素。与传统的加工方法相比,数控加工对刀具的要求更高。不仅要求精度高、刚度高、红硬性好、耐用度高,而且要求尺寸稳定、安装调整方便,能适应高速和大切削用量切削。选刀具时,要使刀具的尺寸与被加工工件的表面尺寸和形状相适应。根据该零件分析选刀如下: 1、由于是钢件,平端面时我选用45硬质合金端面车刀。2、零件外圆粗车、精车在这里我选择一把硬质合金右端面93外圆车刀。零件内轮廓形状加工时我
12、选用的是刀杆为2020mm材料为硬质合金的镗孔刀。3、切槽时由于零件中外形槽宽为8mm,一般都选刀宽4mm,刀杆2020mm材料为硬质合金的切槽刀,切外形槽时选用4mm 刀宽就可以了。零件的内形槽槽宽也是8mm,因此我选用3mm的内切槽刀切内槽。4、切螺纹时为了保证其螺纹刀的强度我选用的材料是硬质合金的60外螺纹车刀和60内螺纹车刀。3.3量具的选择数控加工一般采用通用量具,如游标卡尺、百分表、内径千分尺等,为了使零件加工后达到技术要求,我选择的量具规格是:外端面长度用规格为0150mm游标卡尺进行测量;内孔用规格2550mm内径千分尺进行测量。螺纹用0150mm的游标卡尺进行测量,槽用高度尺
13、测量。量具的精度必须与加工精度相适应,以提高工件的测量精度。部分量具如下图所示: 游标卡尺 内径千分尺3.4夹具的选择数控机床加工零件中必须在机床上占有一个正确的位置,才能使工件加工后达到工序加工要求。机床夹具作为在金属切削机床上确保这个正确的位置的一种工艺装备,其设计及使用在金属切削加工、保证零件加工精度和质量中占有关键的地位。因此选择合适的夹具非常重要,根据该轴类零件的形状位置精度要求需保证同轴度,则选用三爪自动定心卡盘。4.拟定工艺方案4.1加工工序的划分通常工序划分有三种方法:按零件的装夹定位方式划分;按粗、精加工划分; 按所用的刀具划分工序;由于零件需要调头加工,如果按粗、精加工划分
14、工序。在调头加工前有两次粗加工和精加工,调头后加工有一次粗加工和精加工,这样划分的话显得很繁琐且很难保证其同轴度,所以不可取。如果按所用刀具划分工序,刀具至少有7把,比较多,若要调头加工前后至少要重复使用三把刀,而同一把刀的两次粗、精加工分别在调头加工前后,加工内容不连续,所以也不合理,不易划分工序;只有按零件的装夹定位方式划分工序比较符合该零件的加工工序,且能保证两次装夹的位置精度,每一次装夹为一道工序。该零件需调头一次完成三道加工工序即可以完成所有的加工表面,也能够保证各尺寸精度及表面粗糙度。4.2 加工顺序的确定零件车削加工顺序确定需遵循以下几个原则:(1)基面先行原则 用作精基准的表面
15、应优先加工出来,因为定位基准的表面越精确,装夹误差就越小。所以我应先平左端面作为基准面。(2)先主后次 由于所加工表面都是重要表面,因此应按照顺序从右到左加工。(3)先粗后精 先车削去除大部分的金属余量,再进行成形加工以保证零件的尺寸要求和质量要求。(4)先面后孔 因此先加工左端外表面后再钻孔 (5)内外交加 即对有内表面,又有外表面需加工的零件,安排加工顺序时,应先进行内外表面粗加工,后进行内外表面精加工。因此我先对左端内外表面进行粗加工,再一次精加工。4.3加工路线的确定在数控加工中,刀具的刀位点相对于工件运动轨迹称为加工路线。编程时,加工路线的确定原则主要有以下几点:(1) 加工路线应保
16、证被加工零件的尺寸精度和表面粗糙度,且效率高。尽量使数值计算简单、以减少编程工作量。(2) 应使加工路线最短,这样即减少了程序段,又减少了空行程时间。(3) 确定加工路线时,还要考虑工件的加工余量和机床、刀具的刚度等情况确定是一次进给,还是多次进给来完成表面的加工。综合上面加工路线的原则及零件具体分析确定的加工路线有四步如下图所示: 图4.1.1零件轮廓第一步:装夹右端,加工左端内轮廓形状,棒料伸出卡盘外75mm,找正后夹紧。粗车左端面和外圆并钻f20x40mm孔,用G71指令依次粗车左端外轮廓。图4.1.3第二步:用用G71指令从右到左依次粗车左端内轮廓。图4.1.2第三步:装夹右端,依次用
17、G70指令精加工左端内轮廓,再进行左端用G01指令内轮廓切槽,G92指令内螺纹加工,最后依次用G70指令进行左端外轮廓精加工。图4.1.4 第四步:装夹左端用G73指令对右端外轮廓进行粗加工,用G70指令对右端外轮廓进行精加工,用G75指令切槽,G92指令螺纹加工。图4.1.54.4零件定位基准的确定零件定位基准的选择包括粗基准和精基准的选择。(1)粗基准选择原则为了保证不加工和加工表面之间的位置要求,应选不加工表面作粗基准。合理分配各加工表面的余量,应选择毛坯外圆作粗基准。粗基准应避免重复使用。选择粗基准表面应平整,没有浇口、冒口或飞边等缺陷。以便定位可靠。(2)精基准选择原则基准重合原则:
18、选择加工表面的设计基准为定位基准;基准统一原则,自为基准原则,互为基准原则综合上述基准选用原则,由于是轴类零件,在车床上只需用三爪卡盘装夹定位,定位基准应选在零件的轴线上,以毛坯f40mm的棒料的轴线和右端面作为定位基准。4.5装夹方式的确定数控机床与普通机床一样也要选择定位基准和夹紧应力求设计、工艺与编程计算的基准统一,减少装夹次数,尽可能在一次定位装夹后,加工出全部待加工表面,避免采用占机人工调整式加工方案,以充分发挥数控机床的效能。装夹应尽可能一次装夹加工出全部或最多的加工表面。由零件图可分析,我应先装夹f40mm直径毛坯的一端,夹紧其40mm的长度加工左端内外轮廓。一直加工到零件右端的
19、f38 mm然后将棒料卸下。装夹f36 mm的圆柱表面,加工另一端的外轮廓,槽,螺纹。这样两次装夹即可完成零件的所有加工表面,且能保证其加工要求。装夹方式如下:图4.2.1加工左端装夹图图4.2.2加工右端装夹图4.6工作坐标原点与换刀点的确定工件坐标系是编程人员在编程时使用的坐标系,编程人员为了编程方便,便于确定工件几何形状上各要素的位置。选择工件上的某一已知点为原点,建立一个坐标系,称为工件坐标系。工件坐标系原点的选择应注意以下三点:1.工件坐标系原点的选择最好与图样上的尺寸基准(设计基准与工艺基准) 重合,尽量选在精度较高的工件表面,以提高被加工零件的加工精度。2.工件坐标系原点的选择应
20、有利于编程和数值计算及精度测量。3.便于对刀。由于我们学校用的是FANUC系统CK6140VA数控车床,为了方便对刀,一般选工件端面为Z轴坐标原点。 车削时,工件坐标原点是编程时确定地址的依据。通常把X轴的坐标原点设在主轴的回转中心,也就是工件直径为零的地方:Z轴的坐标原点是根据零件具体分析确定的。在这我把Z轴的坐标原点设在工件的端面上。 换刀点的确定,是数控加工工艺分析的重要内容之一。如果换刀点没确定好则可能会打到工件就会造成安全事故,因此我根据零件分析确定工件的换刀点和以工件的左端面为工件原点的工件坐标系如下图所示。图4.5.1工件原点和工件坐标系5.切削用量选择合理的切削用量是指充分利用
21、刀具切削性能和机床动力性能(功率、扭矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。 数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写人程序中。切削用量包括背吃刀量、进给量(进给速度)、主轴转速(切削速度)。对于不同的加工方法,需要选用不同的切削用量。并编入程序单内。 合理选择切削用量的原则是:粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、刀具说明书、切削用量手册,并结合经验而定。 5.1背吃刀量的确定背吃刀量:ap一般指工件上已加工表面和待加
22、工表面间的垂直距离。一般根据加工余量确定。在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的背吃刀量,以减少进给次数。一般当毛坯直径余量小于6mm时,根据加工精度考虑是否留出半精车和精车余量,剩下的余量可一次切除。当零件精度要求较高时,应留出半精车、精车余量,半精车余量一般为0.5mm,所留精车余量一般比普通车削时所留余量小,常取0.10.5mm左右。因此加工该零件背吃刀量选择如下:零件外轮廓粗车循环时选ap=2mm,精加工时选ap=0.5mm,零件内轮廓粗车循环时选ap=1.3mm,精加工时选ap=0.3mm,内、外螺纹粗车时首选ap=0.6mm,逐刀减少粗车5次后,精车时选ap=0.2
23、mm。5.2主轴转速的确定主轴转速应根据零件上被加工部位的直径,并按零件和刀具的材料及加工性质等条件所允许的切削速度来确定。切削速度除了计算和查表选取外,还可根据经验确定,需要注意的是交流变频调速数控车床低速输出力矩小,因而切削速度不能太低。光车时,主轴的速度主要根据允许的切削速度Vc(m/min)选取,计算公式是:N= (5-1)其中Vc-切削速度D-工件或刀具的直径(mm)而车螺纹时的主轴转速是:n-k (5-2)式中:P工件螺纹的螺距或导程(mm); k保险系数,一般取80。根据切削原理可知,切削速度的高低主要取决于被加工零件的精度、材料、刀具的材料和刀具耐用度等因素。从理论上讲,Vc的
24、值越大越好,因为这不仅可以提高生产率,而且可以避免生成积屑瘤的临界速度,获得较低的表面粗糙度值。但实际上由于机床、刀具、工件材料等因素的限制。参考机械设计手册及经验车轮廓时取 : 粗车时Vc=140m/min,精车时Vc=220m/min代入5-1式中:=1000140/3.1460 =1000220/3.1460得=743.099/min = 1100r/min计算的主轴转速n要根据机床有的或接近的转速选取 取=700r/min =1100r/min根据工件图样得知P=1.5,由公式n-k计算得n720,结合公式并根据加工经验确定主轴转速如下:加工面粗加工(r/min)精加工(r/min)外
25、圆加工500r/min910r/min内腔加工450r/min800r/min外槽加工400r/min内槽加工350r/min外螺纹加工500r/min内螺纹加工450r/min5.3进给速度的确定进给速度是数控机床切削用量中的重要参数,主要根据零件的加工进度和表面粗糙度要求以及刀具、工件的材料性质选取。最大进给速度受机床刚度和进给系统的性能限制。一般粗车选用较高的进给速度,以便较快去除毛坯余量,精车以考虑表面粗糙度和零件精度为原则,应选择较低的进给速度。进给速度f可以按公式f =fn计算,式中f表示每转进给量。在加工此零件时进给速度如下表所示:加工面粗车(mm/r)精车(mm/r)车外圆0.
26、2mm/r0.15mm/r镗内孔0.2mm/r0.1mm/r切外槽0.1mm/r切内槽0.1mm/r车外螺纹0.15mm/r车内螺纹0.1mm/r 表 5-36.切削液的选择使用切削液可以减少切削过程中的摩擦,降低切削力和提高刀具使用寿命、加工表面质量和加工零件精度。1切削液具有以下作用。 (1)润滑作用 切削液具有良好润滑能力,可减少刀具与工件或切屑间的直接接触,减轻摩擦和粘结,减少刀具磨损,提高工件表面质量。(2)冷却作用 切削液具有良好冷却作用的切屑液能从切削区域带走大量切削热,使切削温度降低。(3)清洗作用 切削液具有良好清洗能力,加工时可以冲走切削区域与机床上的细碎切屑和脱落的磨粒,
27、防止划伤已加工表面,从而避免切削黏附刀具。(4)防锈作用 切削液中加入防锈剂,如亚硝酸钠、磷酸三钠和石油磺酸钡等,可在金属表面形成一层保护膜,起防锈作用。2常用切削液及其选用金属切削加工中常用的切削液有两大类:水溶液切削液和油溶液切削液。根据使用硬质合金刀具进行高速切削时,我们通常采用水溶性金属切削液。水溶液的主要成份是水。导热性能好,冷却效果好。 综上所述,根据学校数控车间加工时所使用的切削液情况,加工零件时我采用水溶液切削液做为加工时的冷却液。7.工艺文件的制定及程序编制7.1数控加工工艺卡 产品名称零件名称零件图号姓名椭圆轴班级程序编号夹具名称使用设备车间数控0802班O0001 O00
28、02三爪卡盘CK6140数控车加工车间工步号工步内容刀具号刀具规格主轴转速r/min进给速度mm/r背吃刀量备注1装夹右端平左端面T0420X20mm450r/min自定自定手动2对刀及试车外圆T0120X20mm450r/min自定自定手动3左端打孔T05 f20mm0380 r/min自定自定手动4对刀、试车内圆T0620X20mm400 r/min自定自定手动5左端镗孔粗加工T0620X20mm450r/min0.2mm/r1.3mm自动6左端外圆粗加工T0120X20mm500r/min0.2mm/r2mm自动7左端镗孔精加工T0620X20mm800r/min0.1mm/r0.3mm
29、自动8左端外圆精加工T0120X20mm910r/min0.15mm/r0.5mm自动9左端内槽加工T0720X20mm350r/min0.1mm/r4mm自动10左端内螺纹加工T0820X20mm450r/min自动11调头、切断控制尺寸T0220X20mm400 r/min自定自定手动12右端外圆粗加工T0120X20mm500r/min0.2mm/r2mm自动13右端外圆精加工T0120X20mm910r/min0.15mm/r0.5mm自动14右端外圆槽加工T0220X20mm400 r/min0.1mm/r4mm自动15右端外螺纹加工T0320X20mm500r/min自动编制审核批
30、准共*页第*页 7.2刀具卡产品名称零件名称零件图号程序号序号刀具号刀具名称刀具规格加工表面补偿量(mm)备注1T0193外圆车刀20X20mm加工表面右偏刀2T02外圆车槽刀20X20mm切削外圆槽及车断3T03外螺纹刀20X20mm车削外螺纹4T0445端面车刀20X20mm车削端面5T05麻花钻f20mm钻孔6T06镗孔刀20X20mm加工内表面7T07内切槽刀20X20mm切削内槽8T08内螺纹刀20X20mm车削内螺纹编制审核批准共*页第*页7.3程序编制加工程序1如下(零件左端部分需要加工內腔,必须在钻孔后才能进行自动加工)GSKO8O2班数控加工程序清单型别零件图号零件名称椭圆轴
31、A4设备名称数控车床设备型号CK6140基本材料45钢硬度HBs180工序名称外圆工序号30数控系统FANCU-0i系统程序号O0001 程序清单O0001(左端加工程序)程序号N1T0101;选择1号外圆刀1号刀补N2M03S500;主轴正转,转速500 rminN3G00X42Z2; 绝对编程,快速毛坯定位轮廓循环起刀点 N4G71U2R1;外轮廓粗加工循环,给定加工参数。N6N12N5 G71P6Q12U0.5W0.1F2;为外轮廓加工循环程序段。N6G01X34F0.15;从循环起刀点以2mmr进给移动到轮廓起始点N7Z0;N8X36Z-1;倒角N9Z-40;车削直径为36mm圆柱N1
32、0X38;车削台阶N11Z-56;车削直径为38mm圆柱N12X42; 退到毛坯之外(避免循环加工时刀具撞到工件) N13G00X100;快速退刀N14Z100;N15M05;主轴停止N16M00;程序暂停N17 M03S450; (内孔加工) 主轴正转,转速450 rminN18T0606;选择6号镗刀,导入刀具补偿N19G00X20Z2;快速移动到孔外侧N20G71U1.3R1;内轮廓粗加工循环,给定加工参数。N22N29N21 G71P22Q29U0.3W0.1F2;为内轮廓加工循环程序段。N22G01X32F0.15;从循环起刀点以2mmr进给移动到轮廓起始点N23Z0;N24X30Z
33、-1;车削倒角N25Z-5车削30mm的圆柱孔N26G02X24Z-8R3;车削R3的圆弧N27G01X21.4;车削台阶N28Z-32;车削内螺纹圆柱孔N29X18;车削台阶N30Z100;沿轴向快速退出N31M05;主轴停止N32M00;程序暂停N33M03S910;主轴重新起动,转数为910rminN34T0606;重新调入6号刀补,引入刀具偏移量或磨损量N35G00X20Z2;快速移动到孔外侧侧N36G70P22Q29F0.1从N22 N29对轮廓进行精加工N37G00Z100沿轴向快速退出N38M05;主轴停止N39M00;程序暂停N40M03S350;主轴重新起动,转数为350rm
34、inN41T0707;选择7号内槽刀,导入刀具补偿N42G00X20Z2;快速移动到孔外侧N43G01Z-28F0.1;直线插补到内槽轴向起点N44X26;沿X方向加工槽底部N45X20快速退刀N46Z-30;沿Z方向前进N47X26;沿X方向加工槽底部N48X20;快速退刀N49Z-32;沿Z方向前进N50X26;沿X方向加工槽底部N51X20;快速退刀N52G00Z100;沿Z方向快速退刀N53M05;主轴停止N54M00;程序暂停N55T0808;选择8号内螺纹刀,导入刀具补偿N56M03S450;主轴重新起动,转数为450rminN57G00X21.4Z2;快速移动到孔外侧N58G01
35、Z-4F0.1;定位到螺纹孔起切点N59G92X21.4Z-8F2;螺纹循环加工参数设置,螺纹精加工俩次N60X22.0;N61X22.6;N62X23.1;N63X23.5;N64X23.8;N65X24;N66X24;N67G01X10;N68G00Z100;快速退到安全位置N69X100;N70T0101;调换1号刀,调入刀补N71M05;主轴停止N72M00;程序暂停N73M03S910; 左端外圆粗加工 主轴重新起动,转数为910rminN74G00X42Z2;N75G70P6Q12F0.1;从N6 N12对轮廓进行精加工N76G00X100;快速退到安全位置N77Z100;主轴停止
36、N78M05;主轴停止N79M30;程序暂停更改栏工艺员共4页加工程序2(加工零件右端)GSKO8O2班数控加工程序清单型别零件图号零件名称椭圆轴A4设备名称数控车床设备型号CK6140基本材料45钢硬度HBs180工序名称外圆工序号30数控系统FANCU-0i系统程序号 O0002程序清单O0002(右端加工程序)N1M03S500; 左端外圆粗加工 主轴重新起动,转数为500rminN2T0101;重新调入1号刀补,引入刀具偏移量或磨损量N3G00X42Z2;绝对编程,快速毛坯定位轮廓循环起刀点N4G73U18W0R9;N5G73P6Q42U0.5W0.1F0.3从N6 N42对轮廓进行粗
37、加工N6G01X0F0.15;从循环起刀点以0.15mms进给移动到轮廓起始点N7Z0;N8G03X16Z-8R8;加工R8圆弧N9G01X20;加工台阶N10Z-12.144;加工直径为20的圆柱N11X22.98;加工台阶N12#1=50;设#1起始角为50度N13WHILE#1LE90DO1;#1小于等于90度时N14#11=15SIN#1;设置椭圆短轴(X向)变量N15#12=25COS#1;设置椭圆长轴(Z向)变量N16G01X2*#1Z#12-25F0.1直线插补指令逼近加工椭圆弧形状N17#1=#1+1;每次以1度为增量直线加工椭圆弧段N16END1;加工椭圆的一段N18G01X
38、32;加工台阶N19X35.9Z-27;加工螺纹倒角N20Z-53;加工螺纹外圆N21X38;加工台阶N22Z-54;N23X42;退刀至毛坯外N24G00X100;刀具沿径向快速退刀N25Z100;刀具沿轴向快速退刀N26M05;主轴停止N27M00;程序暂停N28M03S910; 主轴重新起动,转数为910rminN29T0101; 重新调入1号刀补,引入刀具偏移量或磨损量N30G00X42Z2;快速移动到毛坯外侧N31G70P6Q42F0.1;从N6 N42对轮廓进行精加工N32G00X100;刀具沿径向快速退刀N33Z100;刀具沿轴向快速退刀N34M05;主轴停止N35M00;程序暂
39、停N36T0202; 选择2号切槽刀,导入刀具补偿N37M03S400;主轴正转,转数为400rminN38G00X40Z-49;快速定位到切槽起点N39G75R0.2;指定径向退刀量为0.2 mmN40G75X30Z-53P500Q3500F0.1;指定槽低、槽宽及加工参数N41G00X100;刀具沿径向快速退刀 N42Z100;刀具沿轴向快速退出N43T0303; 选择3号螺纹刀,导入刀具补偿N44M03S500; 主轴重新起动,转数为500rminN45G00X36Z-21;快速定位到螺纹车削起点N46G92X35.8Z-49F4;螺纹循环加工参数设置,螺纹精加工两次N47X35.2;N
40、48X34.6;N49X34.1;N50X33.7;N51X33.4;N52X33.4;N53G00X36Z-19;快速定位到螺纹车削起点N54G92X35.8Z-49F4;螺纹循环加工参数设置,螺纹精加工两次N55X35.2;N56X34.6;N57X34.1;N58X33.7;N59X33.4;N60X33.4;N61G00X100;沿径向快速退出N62Z100;沿轴向快速退出N63M05;主轴停止N64M30;程序结束返回到程序开端更改栏工艺员共4页8机械加工精度及零件表面质量8.1机械加工精度机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。 1、加工精度包括三个方面内容: (1) 零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 (2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 (3) 零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、提高加工精度的方法: (1) 试切法:即试切-测量-再试切-直至测量结果达到图纸给定要求的方法。 (2) 定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 (3) 调整法:按零件规定的