《古扎拉蒂《计量经济学》4人大读书笔记.docx》由会员分享,可在线阅读,更多相关《古扎拉蒂《计量经济学》4人大读书笔记.docx(9页珍藏版)》请在三一办公上搜索。
1、古扎拉蒂计量经济学4人大读书笔记古扎拉蒂计量经济学4人大版读书笔记 第一章 回归分析的性质 “回归”一词是费朗西斯高尔顿在研究子女身高与父母身高的关系时提出来的,他发现,给定父母的身高,子女的身高会趋向于或“回归”到总人口的平均身高。换言之,父母异常高或异常矮,其儿子的身高都会趋向于或回归到所有男子的平均身高。 统计关系与确定性关系的区别:先看了解什么叫确定性关系,某个应变量确定的依赖于自变量,数学中和经典物理学中的各种定律都是确定性的关系,比如宇宙间两个粒子的引力离,k是比例常数,给定两个粒子质量和他们间的距离,那么他们之间的引力随机可以确定,而且是唯一的。而统计关系是不确定性的,应变量和自
2、变量间是统计依赖关系,给定解释变量的某个取值,不能预测因变量的确定取值,因为这时因变量的取值有着概率分布范围,所以我们说它是一个随机变量,如农作物的收成对气温、降雨量、光照条件的依赖关系是统计性质的,这个性质的意义在于影响农作物的因素还有很多很多,无法一一辨认出来,无论考虑的多少个解释变量,都无法完全解释农作物收成这个因变量,所以它内在的或随机的变异是存在的。 回归和因果:统计关系式本身不能意味着任何因果关系,回归分析研究一个变量对另一些变量的依赖关系但他们绝不是因果关系。对于因果关系的理念,必须来自与统计学之外的经验或者理论,比如说用经济学的理论来说明价格对需求变动的影响。 回归与相关的区别
3、:回归区分哪个是解释变量,哪个是被解释变量,相关不区分两者,也就是说前者变量间是不对称的,后者变量间是对称的。另一方面,相关分析中的所有变量被看作都是随机的,而回归分析则基于以下假定:因变量是随机的,而解释变量是固定的或者非随机的。 给定每个x,都有很多相应的y值,但不可能知道每一个y的值,所以我们用回归线来预测y的均值 第二章 回归分析的一些基本概念 1、条件均值:为什么叫“条件”?因为他们取决于变量x的给定值,E(Y|Xi)读成给定X下Y的期望值,与E(Y)的区别:E(Y)是总体的Y的均值 2、随机或统计总体回归函数:E(Y|Xi)=B1+B2Xi;非随机的或确定的总体回归函数:Yi=B1
4、+B2Xi+i,i的方差记为。 3、样本回归函数:Yi=b1+b2Xi;随机样本回归函数:Yi=b1+b2Xi+ei,各小写字母都,s是真正的但未知的的是总体回归函数中对应大写字母的估计量。ei的方差记为s2222开方的正数OLS估计量。s2被称为回归估计的标准误差,即Y对估计的回归线的离差的标准差,用于衡量所估计的回归线的拟合优度。 4、标准误和标准差的区别:标准误衡量的是一个估计量的精度问题,标准误越大,估计量对真实值的估计就越不精准;标准差则是一组数据的离散程度的度量,标准差越大,该组数据越离散。 第三章 双变量模型:估计问题 1、最小二乘法:A、样本回归函数中使用;B、使得ei2=f,
5、要使minei,分别对b1,b2的偏导等于零的时候可以使得ei最小,得出正规方程12运算求得b=2 、22;C、通过简单代数xyxi2ii=XYXiii-nXY-nX22,b1=Y-b2X 2、经典线性回归模型:最小二乘法的基本假定 假定1:回归模型对参数而言是线性的。Yi=B1+B2Xi+i 假定2:在重复抽样中X值是固定的,即X是非随机的。每一个固定的Xi值都会有一个Y总体,而且每次抽样的时候Xi都是同一个值,来看Y是怎么如何取值的,这意味着我们的分析是条件回归分析,即以回归元X的给定值作为条件的。 假定3:干扰项i的均值为零。E(i|Xi)=0。给定X,对应的Y值都是围绕其均值分布的,最
6、终Y与其均值的离差会互相抵消,所以i的均值为零。这意味着凡是模型未包含的且归属于i的因素对Y的平均影响为零。 假定4:同方差性或者的i方差相等。这意味着给定X值的Y总体有相同的分布或相同的方差 同方差 假定5:各干扰项之间无自相关。给定两个X值,Xi和Xj,i和j的相关性为零。设想i和j正相关,那么Yi不仅依赖于Xi而且依赖于j,因为j在一定程度上决定了i。 假定6:Xi和i的协方差为零。干扰项和解释变量X是不相关的,即可以区分Y受到的只是X的影响,而不会收到随机干扰项中未纳入模型的因素的影响。 假定7:观测次数n必须大于待估计的参数个数。 假定8:X值要有变异性。给定一个样本,X值不可以全是
7、相同的。 假定9:正确的设定了回归模型。即在经验分析中,模型没有设定偏差。 假定10:没有完全的多重共线性。即解释变量之间没有完全的线性关系。 3、在统计学中一个估计量的精密度可以用它的标准误来度量。 4、最小二乘估计量的性质:高斯-马尔可夫定理、最优线性无偏估计。 5、判定系数r2:“拟合优度”的一个度量。r2测度了在Y的总变异中由回归模型解释的部分所占的百分比。而r2的开平方根r则是样本的相关系数。在对时间序列数据的回归中通常能得到很高的r2值,而横截面数据的回归中得到r2的值较低是因为样本单位的分散性所致。 第四章 经典正态线性回归模型 1、i的正态性假定:i 2、正态性假定下估计的性质
8、:b1,b2 第五章 双变量回归:区间估计与假设检验 1、B1、B2、三个统计量的区间估计造t变量、B1的置信区间、B2的置信区间、构造变量、2的置信区间、 2、假设检验: 置信区间法:一个决策规则 显著性检验法:两个决策规则 3、显著性检验的决策语言: 4、2倍t经验法则:双侧、单侧 5、两类错误的相对代价: 6、精确的显著性水平p值:|t|值越大,估计的b2值越远离假设的B2值,则说明数据越不支持虚拟假设,真实的B2不等于零就越显著,查t表可知同样自由度下,|t|越大,p值越小。在回归结果中,p值与|t|成反向变动,t统计量的p值是精确的显著性水平,p值越小B2不等于零就越显著。 7、P值
9、判断:对于双边检验,当P值小于时即可判断通过t检验;对于单边检验,当P/2值小于时,即可判断通过t检验。 8、回归分析与方差分析: 第十章 多重共线性 1、完全共线性和近似共线性:完全的多重线性关系即X间有准确的线性函数关系,如下面情形:。不完全的多重共线性即X间不是准确的线性函数关系,而是高度相关关系,如。完全共线性的情形用ols估计各参数是不可能的,近似共线性的情形中,不管相关度有多高,只要不等于1,用ols估计各参数都是可能的。 2、注意:多重共线性仅对X变量之间的线性关系而言的,若解释变量之间有非线性关系,比如变量X1和X12是非线性的函数关系,严格的讲并不违反无多重共线性假定。但这种
10、情况,X1和X12是的相关系数将会接近1,那么他们的系数将很难准确。另外,由于多重共线性是对假定的非随机的解释变量之间的关系而言的,所以它是一种样本现象,而非总体特征;多重共线性是一个程度问题而不是有无问题,有意义的程度不在于有无之间而在于它的不同的程度。 3、多重共线性的实际后果: 224、多重共线性的做题步骤: A、根据ols结果初步判断:观察因变量对所有自变量回归模型的结果,看各系数的经济意义是否与预期一致以及是否存在高R2和F值而部分系数小t值的情况,如果存在,则初步认为解释变量间存在多重共线性。 B、找出是哪些变量间存在多重共线性:对各x进行相关系数分析,若存在两变量间相关系数0.8
11、的情况,则可认为此两变量高度相关。 C、单独回归、辅助回归和逐步回归求最优模型:Y对各自变量分别回归,对Ri2值进行排序,选Ri2值最大的自变量作为初始回归模型逐步引入各个X自变量进行逐步回归,每引入一个X自变量都要观察其回归结果的t值,对t值不显著的予以剔除。最后仅以留下来的自变量为回归元做最优的回归模型。 5、利用差分法消除多重共线性:由于多重共线性会引起各种实际后果,在现实工作中,如果选取的必须变量存在着多重共线性,为了提高模型的精确度,可以用差分法消除变量间的多重共线性。可以用增量或增长率来作为变量,如Y对Xi进行回归,从而消除多重共线性。 A、一次差分形式: B、比率变换: C、A和
12、B的缺陷:第十一章 异方差:误差的方差不是常数会怎么样? 1、异方差的缘由: 2、异方差情形用ols估计后果:b2已经不是BLUE,不是“有效的”或“最优的”,但仍是线性的和无偏的。不是“最优的”意味着b2在线性无偏估计量一类中不是最小方差。 3、异方差的诊断:方法多种多样,下面仅介绍三种方法,着重掌握C。 A、问题的性质:往往根据所考虑的性质就能判断是否存在异方差性,例如,在储蓄对收入的回归模型中,残差的方差随着收入的增加而增加;又如,在打字出错率对训练时间的回归中,残差的方差随训练时间的增多而变小。 B、图解法:在做题时首选的方法,a、可想利用ols的 回归结果将e对Y帽做散点图,看2i是
13、否呈现出一定的关系样式,并确定是单调递增、单调递减还是复杂型;b、也可以做e和2i解释变量之一做散点图,当双变量模型时结果是和a一样的,当多变量模型时,可以根据A判断异方差是那个变量引起的,做e和该变量的散点图确定是单调递增、单调递减还是复2i杂型。 C、A和B都是非正式的方法,正式的方法常用怀特检验: 4、异方差的修正:加权最小二乘法在实际操作中人们通常采用如下的经验方法:不对原模型进行异方差性检验,而是直接选择加权最小二乘法,尤其是采用截面数据作样本时。如果确实存在异方差,则被有效地消除了;如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法 5、 第十二章 自相关:误差项相关会怎么样? 1、自相关的缘由: 2、序列相关的后果: 3、侦查序列相关: A、做et与et-1的散点图 B、杜宾-瓦森检验法:ols结果中都会给出D.W值,如何判断? C、拉格朗日乘数检验:eviews直接输入命令Viewresidual testsserial correlation lm tests 4、序列相关的补救:广义最小二乘法、科克伦-奥科特迭代、杜宾两步法