《概率论与数理统计第一章14条件概率课件.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计第一章14条件概率课件.ppt(60页珍藏版)》请在三一办公上搜索。
1、湖北大学材料科学与工程学院,尚勋忠,第1章 随机事件及其概率,第四节 条件概率,条件概率乘法公式小结 布置作业,在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率.,一、条件概率,1.条件概率的概念,如在事件B发生的条件下求事件A发生的概率,将此概率记作P(A|B).,一般地 P(A|B)P(A),P(A)=1/6,,例如,掷一颗均匀骰子,A=掷出2点,,B=掷出偶数点,,P(A|B)=?,已知事件B发生,此时试验所有可能结果构成的集合就是B,,P(A|B)=1/3.,B中共有3个元素,它们的出现是等可能的,其中只有1个在集A中.,容易看到,P(A|B),于是,P(A)=3/
2、10,,又如,10件产品中有7件正品,3件次品,7件正品中有3件一等品,4件二等品.现从这10件中任取一件,记,B=取到正品,A=取到一等品,,P(A|B),则,P(A)=3/10,,B=取到正品,P(A|B)=3/7,本例中,计算P(A)时,依据的前提条件是10件产品中一等品的比例.,A=取到一等品,,计算P(A|B)时,这个前提条件未变,只是加上“事件B已发生”这个新的条件.,这好象给了我们一个“情报”,使我们得以在某个缩小了的范围内来考虑问题.,若事件B已发生,则为使 A也发生,试验结果必须是既在 B 中又在A中的样本点,即此点必属于AB.由于我们已经知道B已发生,故B变成了新的样本空间
3、,于是 有(1).,设A、B是两个事件,且P(B)0,则称(1),2.条件概率的定义,为在事件B发生的条件下,事件A的条件概率.,3.条件概率的性质(自行验证),2)从加入条件后改变了的情况去算,4.条件概率的计算,1)用定义计算:,P(B)0,P(A|B)=,B发生后的缩减样本空间所含样本点总数,在缩减样本空间中A所含样本点个数,例1 掷两颗均匀骰子,已知第一颗掷出6点,问“掷出点数之和不小于10”的概率是多少?,解法1,解法2,解 设A=掷出点数之和不小于10 B=第一颗掷出6点,应用 定义,在B发生后的缩减样本空间中计算,由条件概率的定义:,即 若P(B)0,则P(AB)=P(B)P(A
4、|B)(2),而 P(AB)=P(BA),二、乘法公式,若已知P(B),P(A|B)时,可以反求P(AB).,将A、B的位置对调,有,故 P(A)0,则 P(AB)=P(A)P(B|A)(3),若 P(A)0,则P(BA)=P(A)P(B|A),(2)和(3)式都称为乘法公式,利用它们可计算两个事件同时发生的概率,注意P(AB)与P(A|B)的区别!,请看下面的例子,例2 甲、乙两厂共同生产1000个零件,其中 300件是乙厂生产的.而在这300个零件中,有189个是标准件,现从这1000个零件中任取一个,问这个零件是乙厂生产的标准件的概率是多少?,所求为P(AB).,甲、乙共生产1000 个
5、,189个是标准件,300个乙厂生产,设B=零件是乙厂生产,A=是标准件,所求为P(AB).,设B=零件是乙厂生产,A=是标准件,若改为“发现它是乙厂生产的,问它是标准件的概率是多少?”,求的是 P(A|B).,B发生,在P(AB)中作为结果;在P(A|B)中作为条件.,例3 设某种动物由出生算起活到20年以上的概率为0.8,活到25年以上的概率为0.4.问现年20岁的这种动物,它能活到25岁以上的概率是多少?,解 设A=能活20年以上,B=能活25年以上,依题意,P(A)=0.8,P(B)=0.4,所求为 P(B|A).,条件概率P(A|B)与P(A)的区别,每一个随机试验都是在一定条件下进
6、行的,设A是随机试验的一个事件,则P(A)是在该试验条件下事件A发生的可能性大小.,P(A)与 P(A|B)的区别在于两者发生的条件不同,它们是两个不同的概念,在数值上一般也不同.,而条件概率 P(A|B)是在原条件下又添加“B 发生”这个条件时A发生的可能性大小,即 P(A|B)仍是概率.,乘法公式应用举例,一个罐子中包含b个白球和r个红球.随机地抽取一个球,观看颜色后放回罐中,并且再加进 c 个与所抽出的球具有相同颜色的球.这种手续进行四次,试求第一、二次取到白球且第三、四次取到红球的概率.,(波里亚罐子模型),于是W1W2R3R4表示事件“连续取四个球,第一、第二个是白球,第三、四个是红
7、球.”,随机取一个球,观看颜色后放回罐中,并且再加进c个与所抽出的球具有相同颜色的球.,解 设 Wi=第i次取出是白球,i=1,2,3,4,Rj=第j次取出是红球,j=1,2,3,4,用乘法公式容易求出,当 c 0 时,由于每次取出球后会增加下一次也取到同色球的概率.这是一个传染病模型.每次发现一个传染病患者,都会增加再传染的概率.,=P(W1)P(W2|W1)P(R3|W1W2)P(R4|W1W2R3),P(W1W2R3R4),一场精彩的足球赛将要举行,5个球迷好不容易才搞到一张入场券.大家都想去,只好用抽签的方法来解决.,5张同样的卡片,只有一张上写有“入场券”,其余的什么也没写.将它们放
8、在一起,洗匀,让5个人依次抽取.,后抽比先抽的确实吃亏吗?,到底谁说的对呢?让我们用概率论的知识来计算一下,每个人抽到“入场券”的概率到底有多大?,“大家不必争先恐后,你们一个一个按次序来,谁抽到入场券的机会都一样大.”,我们用Ai表示“第i个人抽到入场券”i1,2,3,4,5.,显然,P(A1)=1/5,P()4/5,第1个人抽到入场券的概率是1/5.,也就是说,,则 表示“第i个人未抽到入场券”,因为若第2个人抽到了入场券,第1个人肯定没抽到.,由于,由乘法公式,P(A2)=(4/5)(1/4)=1/5,这就是有关抽签顺序问题的正确解答.,同理,第3个人要抽到“入场券”,必须第1、第2个人
9、都没有抽到.因此,(4/5)(3/4)(1/3)=1/5,继续做下去就会发现,每个人抽到“入场券”的概率都是1/5.,抽签不必争先恐后.,也就是说,,三、小结,这一讲,我们介绍了条件概率的概念,给出了计算两个或多个事件同时发生的概率的乘法公式,它在计算概率时经常使用,需要牢固掌握.,第四节 条件概率,全概率公式贝叶斯公式小结 布置作业,有三个箱子,分别编号为1,2,3.1号箱装有1个红球4个白球,2号箱装有2红3白球,3号箱装有3 红球.某人从三箱中任取一箱,从中任意摸出一球,求取得红球的概率.,解 记 Ai=球取自i号箱,i=1,2,3;B=取得红球,B发生总是伴随着A1,A2,A3 之一同
10、时发生,,其中 A1、A2、A3两两互斥,看一个例子:,三、全概率公式,将此例中所用的方法推广到一般的情形,就得到在概率计算中常用的全概率公式.,对求和中的每一项运用乘法公式得,P(B)=P(A1B)+P(A2B)+P(A3B),代入数据计算得:P(B)=8/15,运用加法公式得到,即 B=A1B+A2B+A3B,且 A1B、A2B、A3B 两两互斥,一个事件发生.,某一事件A的发生有各种可能的原因,如果A是由原因Bi(i=1,2,n)所引起,则A发生的概率是,每一原因都可能导致A发生,故A发生的概率是各原因引起A发生概率的总和,即全概率公式.,P(ABi)=P(Bi)P(A|Bi),全概率公
11、式.,我们还可以从另一个角度去理解,由此可以形象地把全概率公式看成为“由原因推结果”,每个原因对结果的发生有一定的“作用”,即结果发生的可能性与各种原因的“作用”大小有关.全概率公式表达了它们之间的关系.,诸Bi是原因B是结果,例 甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4、0.5、0.7.飞 机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.,设A=飞机被击落 Bi=飞机被i人击中,i=1,2,3,由全概率公式,则 A=B1A+B2A+B3A,解,P(A)=P(B1)P(A|B1)+P(B2)P(A|B2),
12、+P(B3)P(A|B3),可求得,为求P(Bi),设 Hi=飞机被第i人击中,i=1,2,3,将数据代入计算得,P(B1)=0.36;P(B2)=0.41;P(B3)=0.14.,P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3),=0.458,=0.360.2+0.41 0.6+0.14 1,即飞机被击落的概率为0.458.,于是,该球取自哪号箱的可能性最大?,这一类问题是“已知结果求原因”.在实际中更为常见,它所求的是条件概率,是已知某结果发生条件下,探求各原因发生可能性大小.,某人从任一箱中任意摸出一球,发现是红球,求该球是取自1号箱的概率.,或者问
13、:,四、贝叶斯公式,看一个例子:,接下来我们介绍为解决这类问题而引出的,贝叶斯公式,有三个箱子,分别编号为1,2,3,1号箱装有1个红球4个白球,2号箱装有2红球3白球,3号箱装有3红球.某人从三箱中任取一箱,从中任意摸出一球,发现是红球,求该球是取自1号箱的概率.,1,1红4白,某人从任一箱中任意摸出一球,发现是红球,求该球是取自1号箱的概率.,记 Ai=球取自i号箱,i=1,2,3;B=取得红球,求P(A1|B),运用全概率公式计算P(B),将这里得到的公式一般化,就得到,贝叶斯公式,该公式于1763年由贝叶斯(Bayes)给出.它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的
14、概率.,贝叶斯公式在实际中有很多应用.,它可以帮助人们确定某结果(事件 B)发生的最可能原因.,例 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?,则 表示“抽查的人不患癌症”.,已知 P(C)=0.005,P()=0.995,P(A|C)=0.95,P(A|)=0.04,求解如下:,设 C=抽查的人患有癌症,A=试验结果是阳性,,求 P(C|A).,现在来分析一下结果的意义.,由贝叶斯公式,可得,代入数据计算得 P(CA)=0.1066,2.检出阳性是否一定
15、患有癌症?,1.这种试验对于诊断一个人是否患有癌症有无意义?,如果不做试验,抽查一人,他是患者的概率,患者阳性反应的概率是0.95,若试验后得阳性反应则根据试验得来的信息,此人是患者的概率为,从0.005增加到0.1066,将近增加约21倍.,1.这种试验对于诊断一个人是否患有癌症有意义.,P(CA)=0.1066,P(C)=0.005,试验结果为阳性,此人确患癌症的概率为 P(CA)=0.1066,2.即使你检出阳性,尚可不必过早下结论你有癌症,这种可能性只有10.66%(平均来说,1000个人中大约只有107人确患癌症),此时医生常要通过再试验来确认.,P(Ai)(i=1,2,n)是在没有进一步信息(不知道事件B是否发生)的情况下,人们对诸事件发生可能性大小的认识.,当有了新的信息(知道B发生),人们对诸事件发生可能性大小P(Ai|B)有了新的估计.,贝叶斯公式从数量上刻划了这种变化,在贝叶斯公式中,P(Ai)和P(Ai|B)分别称为原因的验前概率和验后概率.,这一讲我们介绍了,全概率公式,贝叶斯公式,它们是加法公式和乘法公式的综合运用,同学们可通过进一步的练习去掌握它们.,五、小结,六、作业,习题1-45 7 9 10 12,