平面向量概念教学设计.docx

上传人:牧羊曲112 文档编号:3490754 上传时间:2023-03-13 格式:DOCX 页数:8 大小:41.46KB
返回 下载 相关 举报
平面向量概念教学设计.docx_第1页
第1页 / 共8页
平面向量概念教学设计.docx_第2页
第2页 / 共8页
平面向量概念教学设计.docx_第3页
第3页 / 共8页
平面向量概念教学设计.docx_第4页
第4页 / 共8页
平面向量概念教学设计.docx_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《平面向量概念教学设计.docx》由会员分享,可在线阅读,更多相关《平面向量概念教学设计.docx(8页珍藏版)》请在三一办公上搜索。

1、平面向量概念教学设计 篇一:平面向量概念教案 平面向量概念教案 一课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 、问题引入 1、在物理中,位移与距

2、离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 讲授新课 1、向量的概念 练习1 对于下列各量: 质量 速度位移力加速度路程密度功体积温度 其中,是向量的有: 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力。思考一下物理学科中是如何表示力这一向量的? 有向线段及有向线段的三要素 向量的模 零向量,记作; 单位向量 练习2 边长为6的等边abc中, ,与

3、 相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 相等向量的定义 共线向量的定义 六教具:黑板 七作业 八教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计 本节课的内容是数学必修4,第二章平面向量的引言和第一节平面向量的实际背景及基本概念两部分,所需课时为1课时。 一 教材分析 向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有

4、方向的量是它的物理背景,有向线段是它的几何背景。向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。 本课是“平面向量”的起始课,具有“统领全局”的作用。本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能 二 学情分析 在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。 三 目标定位 根据以上

5、的分析,本节课的教学目标定位: 1)、知识目标 通过对位移、速度、力等实例的分析,形成平面向量的概念; 学会平面向量的表示方法,理解向量集形与数于一身的基本特征; 理解零向量、单位向量、相等向量、平行向量的含义。 2)、能力目标培养用联系的观点 ,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维; 3)、情感目标使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。 重点:向量概念、向量的几何表示、以及相等向量概念; 难点:让学生感受向量、平行或共线向量等概念形成过程; 四、 教学过程概述: 4.1 向量概念的形成 4.1.1 让学生

6、感受引入概念的必要性 引子:章节 引言 意图:向量概念不是凭空产生的。用这一简单直观的问题让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容,学生会有亲切感,有助于激发学习兴趣。 问题1 你能否再举出一些既有大小又有方向的量? 意图:激活学生的已有相关经验。 进一步直观演示,加深印象。 追问:生活中有没有只有大小没有方向的量?请举例。 类比数的概念获得向量概念的定义。 4.1.2 向量的表示方法 问题2 数学中,定义概念后,通常要用符号表示它。怎样把你举例中的向量表示出来呢 意图:让学生先练习力的表示,让错误呈现,激发认知冲突,最后自觉接受用带有箭头的线段来表示向量。 几何表示法:

7、 记作a b |a b|为ab的长度(又称模)。 字母表示法:a、b、c?或a、b、c 4.1.3 单位向量、零向量的概念: 问题3用有向线段表示向量,学生演板,提出问题,大家画得线段长度长短不一怎么回事?如何解决这问题?由单位长度引入单位向量 意图:这样过渡学生不会感觉新的概念是从天而降,而是进一步学习的需要 归纳小结:单位向量长度等于1个单位长度并与a同向的向量叫做a方向上的单位向量 让演板学生回到座位之后利用这个情境提出问题,他位移的大小是什么? 归纳小结:零向量长度为0的向量,记作0 提问:你们认为零向量和单位向量特殊吗?它们的特殊性体现在哪?类比实数集合中的0和1. 4.2 相等向量

8、、平行(共线)向量概念的形成 设计活动:传花游戏,游戏中将呈现通过学生之间传递花朵所产生的位移向量,让他们从大小和方向两个方面展开思考,教师适时介入,强化本质特征、规范概念表达,与学生一起完成概念的定义。 意图:通过游戏调动学生的兴趣和积极性,让学生通过亲身经历去体会相等向量与平行向量的本质特征。 归纳: 1、从“方向”角度看,有方向相同或相反的非零向量就是平行向量。 记作:a b c 任一组平行向量都可移到同一条直线上 ,所以平行向量也叫共线向量。 2、从“长度”角度看,有模相等的向量,a = b 3、既关注方向有又关注长度有相等向量:记作:a = b a 规定: 0 与任一向量都平行或。

9、教师通过动画演示深化上述两个概念 问题4 由相等向量的概念知道,向量完全有它的方向和大小确定。由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么区别与联系? 意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程。 4.3 课堂练习: 概念辨析 两个长度相等的向量一定相等 相等向量的起点必定相同 平行向量就是共线向量 若 ab 与 cd 共线,则 a、b、c、d 四点必在同一条直线上 向量 a 与 b 平行,则向量 a 与 b 的方向相同或相反 教材例题 3、教材第79页,b组第一题(选择此题,可以进一

10、步理解位移概念,又能为后一步的学习做好铺垫) 4.4 课堂小结 问题5 欣赏一首关于向量的诗,布置任务能否用拟人的方式把你对向量的认识做个概述呢? 结束语:略 板书设计 5.5明确零向量的意义和作用,不过分纠缠于细节。 首先,规定零向量与任何向量平行是完善概念系统的需要。其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。 总之,作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机。这节“概念课”,概念的理解无疑是重点,也是难点。概念的教学应在概念的发生发展过程中揭示它的本来面目。要让

11、学生参与概念本质特征的概括活动过程,这也是培养学生创新精神和实践能力的必由之路! 三、教学诊断分析 本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。为了帮助学生建立向量的概念,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。具体教学中,要设计一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概

12、念的基本思路,而不是停留在某个具体的概念学习上。这也是本堂课的核心目标。 由于数学概念的高度抽象性,学生往往要费很多周折才能理解,教师应从学生的认知水平出发,针对学生的理解困难来展开教学,保证学生参与概念本质特征的概括活动,确保学生有自己想明白的机会和时间,这是至关重要的。 本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量

13、、研究特殊向量的关系。在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。 本课中出现的特殊向量零向量,很多教师都会在“零向量与任意向量平行上”花太多时间,原因是“这是考试中的一个陷阱”。这其实是对零向量的意义和作用理解不到位的表现:首先,规定零向量与任何向量平行是完善概念系统的需要;其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。 四

14、、本课教学特点及预期效果分析 在学生建立向量的概念之初,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。因此在具体教学中,我设计了一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。 在向量的几何表示中,我让学生大胆探索,而不是“全包全揽”,教师引导,学生补充改进,最终明

15、确向量几何表示的正确方法。整个过程全体同学热情参与,自我教育,互帮互学,课堂气氛生动活泼。 当同学们能将向量正确的几何表示时,我又适时地提出问题:大家画出的线段长短不一,怎么解决?由此自然过渡到单位长度上,使得单位向量的引入也就顺理成章了。 为了帮助学生学习相等向量、平行向量的概念,本课设计了“传花游戏”,通过学生之间传递花朵所产生的位移向量,让学生积极参与,仔细观察,自己概括出概念的本质特征,将课堂气氛推向一个新的高潮。 在结束本课之前,为了让同学对向量加深印象,我让学生先欣赏一首关于向量的诗歌,再让学生在课外动笔写出自己对向量的感受。 本节课是从现实世界的常见实例出发,以学生自主探究的教学方式为主。在课堂上,创建了一个以全班学生共同参与的向量游戏平台,让学生在轻松愉悦的课堂环境中,共同参与,共同讨论,共同分析,让学生自然地、水到渠成的完成本节内容的学习。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号